Generic properties of Symmetric Tensors

Pierre COMON *13S - CNRS*

other contributors:

Bernard MOURRAIN INRIA institute

> Lek-Heng LIM, Stanford University

Tensors & Arrays

Definitions

Table $\boldsymbol{T} = \{T_{ij..k}\}$

- Order d of $T \stackrel{\text{def}}{=} \#$ of its ways = # of its indices
- **Dimension** $n_{\ell} \stackrel{\text{def}}{=}$ range of the ℓth index
- **T** is *Square* when all dimensions $n_{\ell} = n$ are equal
- **T** is *Symmetric* when it is square and when its entries do not change by *any* permutation of indices

2006

Tensors & Arrays

Properties

• Outer (tensor) product $C = A \circ B$:

$$C_{ij..\ell ab..c} = A_{ij..\ell} B_{ab..c}$$

EXAMPLE 1 outer product between 2 vectors: $\boldsymbol{u} \circ \boldsymbol{v} = \boldsymbol{u} \, \boldsymbol{v}^{\mathsf{T}}$

Multilinearity. An order-3 tensor T is transformed by the multi-linear map $\{A, B, C\}$ into a tensor T':

$$T'_{ijk} = \sum_{abc} A_{ia} B_{jb} C_{kc} T_{abc}$$

Similarly: at any order d.

Tensors & Arrays

Example

EXAMPLE 2

Take

$$\boldsymbol{v} = \left(\begin{array}{c} 1 \\ -1 \end{array} \right)$$

Then

$$\boldsymbol{v}^{\circ 3} = \left(\begin{array}{cc|c} 1 & -1 & -1 & 1 \\ -1 & 1 & 1 & -1 \end{array} \right)$$

This is a "rank-1" symmetric tensor

2006

CanD/PARAFAC vs ICA

CanD/PARAFAC vs ICA

PARAFAC cannot be used when:

• Lack of diversity

CanD/PARAFAC vs ICA

PARAFAC cannot be used when:

- Lack of diversity
- Proportional slices

CanD/PARAFAC vs ICA

PARAFAC cannot be used when:

- Lack of diversity
- Proportional slices
- Lack of physical meaning (e.g.video)

CanD/PARAFAC vs ICA

PARAFAC cannot be used when:

- Lack of diversity
- Proportional slices
- Lack of physical meaning (e.g.video) $= + \cdots +$

■ Then use *Independent Component Analysis* (ICA) [Comon'1991]

ICA: decompose a *cumulant tensor* instead of the data tensor

Independent Component Analysis (ICA)

Advantages of ICA

• One can obtain a tensor of *arbitrarily large* order from a single data *matrix*.

Drawbacks of ICA

- One dimension of the *data matrix* must be much larger than the other
- Additional computational cost of the Cumulant tensor

Tensors and Polynomials

Bijection

EXAMPLE 6 (d, n) = (3, 2) $p(x_1, x_2) = \sum_{i,j,k=1}^2 T_{ijk} x_i x_j x_k$ $T = \begin{pmatrix} 0 & 1 & | & 1 & 0 \\ 1 & 0 & | & 0 & 0 \end{pmatrix} =$ $\Rightarrow p(\mathbf{x}) = 3 x_1^2 x_2 = 3 \mathbf{x}^{[2,1]}$

Tensors and Polynomials Bijection

Symmetric tensor of order d and dimension n can be associated with a unique homogeneous polynomial of degree d in n variables:

$$p(\boldsymbol{x}) = \sum_{\boldsymbol{j}} T_{\boldsymbol{j}} \ \boldsymbol{x}^{\boldsymbol{f}(\boldsymbol{j})}$$
(1)

- integer vector \boldsymbol{j} of dimension $d \leftrightarrow$ integer vector $\boldsymbol{f}(\boldsymbol{j})$ of dimension n
- entry f_k of $\boldsymbol{f}(\boldsymbol{j})$ being $\stackrel{\text{def}}{=}$ #of times index k appears in \boldsymbol{j}
- We have in particular $|\boldsymbol{f}(\boldsymbol{j}))| = d$.
- Standard conventions $\boldsymbol{x}^{\boldsymbol{j}} \stackrel{\text{def}}{=} \prod_{k=1}^{n} x_{k}^{j_{k}}$ and $|\boldsymbol{f}| \stackrel{\text{def}}{=} \sum_{k=1}^{n} f_{k}$, where \boldsymbol{j} and \boldsymbol{f} are integer vectors.

Orbits

Definition

- **General Linear group** \mathcal{GL} : group of invertible matrices
- Orbit of a polynomial p: all polynomials q that can be transformed into p by $\mathbf{A} \in \mathcal{GL}$: $q(\mathbf{x}) = p(\mathbf{Ax})$.
- Allows to classify polynomials

Quadrics

quadratic homogeneous polynomials

Binary quadrics $(2 \times 2 \text{ symmetric matrices})$

- Orbits in \mathbb{R} : $\{0, x^2, x^2 + y^2, x^2 y^2\}$ $\Rightarrow 2xy \in \mathcal{O}(x^2 - y^2)$ in $\mathbb{R}[x, y]$
- Orbits in \mathbb{C} : $\{0, x^2, x^2 + y^2\}$ $\Rightarrow 2xy \in \mathcal{O}(x^2 + y^2)$ in $\mathbb{C}[x, y]$
- Set of singular matrices is closed
- Set \mathcal{Y}_r of matrices of at most rank r is closed

2006

Spaces of tensors

dimensions

Spaces of tensors

dimensions

•
$$\mathcal{A}_n$$
: square asymmetric of dimensions n and order d
 $\eqriftial dimension D_A(n,d) = n^d$

	quadric	cubic	quartic	quintic	sextic
n\d	2	3	4	5	6
2	3	4	5	6	7
3	6	10	15	21	28
4	10	20	35	56	84
5	15	35	70	126	210
6	21	56	126	252	462

Number of free parameters in a symmetric tensor as a function of order d and dimension n

Definition of Rank

Any tensor can always be decomposed (possibly non uniquely) as:

$$\boldsymbol{T} = \sum_{i=1}^{r} \boldsymbol{u}(i) \circ \boldsymbol{v}(i) \circ \dots \boldsymbol{w}(i)$$
(2)

- **DEFINITION** $Tensor \ rank \stackrel{\text{def}}{=} \text{minimal } \# \text{ of terms necessary}$
- This *Canonical decomposition* (CAND) holds valid in a *ring*
- The CAND of a multilinear transform = the multilinear transform of the CAND:
 - If $T \xrightarrow{\mathcal{L}} T'$ by a multilinear transform (A, B, C),
 - then $(\boldsymbol{u}, \boldsymbol{v}, ..\boldsymbol{w}) \xrightarrow{\mathcal{L}} (\boldsymbol{A}\boldsymbol{u}, \boldsymbol{B}\boldsymbol{v}, ..\boldsymbol{C}\boldsymbol{w})$

P.Comon

Ranks are difficult to evaluate

Clebsch theorem

Alfred Clebsch (1833-1872)

The generic ternary quartic cannot in general be written as the sum of 5 fourth powers

- D(3,4) = 15
- 3r free parameters in the CAND
- But r = 5 is not enough $\rightarrow r = 6$ is generic

Questions

- **1.** Rank vs Symmetric rank in S_n
- 2. Generic rank, Typical rank Differences between S_n and A_n
- **3.** Rank and CAND of a given tensor UniquenessCloseness of sets of given rank
- **4.** Maximal rank in \mathcal{S}_n or \mathcal{A}_n
- **5.** Differences between \mathbb{R} and \mathbb{C}

Symmetric rank vs rank

given a symmetric tensor, \boldsymbol{T} , one can decompose it as

- a sum of symmetric rank-1 tensors
- a sum of rank-1 tensors
- ➤ Is the rank the same?

Lemma $rank(T) \leq rank_S(T)$

Symmetric CAND vs CAND

• Let $T \in S$ symmetric tensor, and its CAND:

$$oldsymbol{T} = \sum_{k=1}^r oldsymbol{T}_k$$

where \boldsymbol{T}_k are rank-1.

PROPOSITION 1

If the constraint $T_k \in S$ is relaxed, then the rank is still the same

But \boldsymbol{T}_k 's need not be each symmetric when solution is not essentially unique

Proof. Generically when rank \leq dimension, Always in dimension 2

Topology of polynomials definition

- Every elementary closed set $\stackrel{\text{def}}{=}$ varieties, defined by $p(\boldsymbol{x}) = 0$
- Closed sets = finite union of varieties
- Closure of a set \mathcal{E} : smallest closed set $\overline{\mathcal{E}}$ containing \mathcal{E}
- \blacktriangleright called Zariski topology in $\mathbb C$
- ▶ this is not Euclidian topology, but results still apply

Tensor subsets

• Set of tensors of rank at most r with values in \mathbb{C} :

$$\mathcal{Y}_r = \{ \boldsymbol{T} \in \mathcal{T} : r(\boldsymbol{T}) \leq r \}$$

• Set of tensors of rank *exactly* $r: \mathcal{Z}_r = \{ T \in T : r(T) = r \}$

$$\mathcal{Z} = \mathcal{Y}_r - \mathcal{Y}_{r-1}, \ r > 1$$

Zariski closures: $\overline{\mathcal{Y}}_r, \overline{\mathcal{Z}}_r$.

PROPOSITION 3

 \mathcal{Z}_1 is closed *but not* \mathcal{Z}_r , r > 1 (intuitively obvious)

[Burgisser'97] [Strassen'83]

 $\begin{array}{l} \textbf{EXAMPLE} \\ \boldsymbol{T}_{\varepsilon} = \boldsymbol{T}_{0} + \varepsilon \, \boldsymbol{y}^{\circ d}, \ \boldsymbol{T}_{0} \in \mathcal{Z}_{r-1} \end{array}$

PROPOSITION 4 If d > 2, \mathcal{Y}_r is not closed for 1 < r < R.

Proof. \exists Sequence of rank-2 tensors converging towards a rank-4:

$$\boldsymbol{T}_{\varepsilon} = rac{1}{\varepsilon} \left[(\boldsymbol{u} + \varepsilon \, \boldsymbol{v})^{\circ 4} - \boldsymbol{u}^{\circ 4} \right]$$

In fact, as $\varepsilon \to 0,$ it tends to:

 $\boldsymbol{T}_0 = \boldsymbol{u} \circ \boldsymbol{v} \circ \boldsymbol{v} \circ \boldsymbol{v} + \boldsymbol{v} \circ \boldsymbol{u} \circ \boldsymbol{v} \circ \boldsymbol{v} + \boldsymbol{v} \circ \boldsymbol{v} \circ \boldsymbol{u} \circ \boldsymbol{v} + \boldsymbol{v} \circ \boldsymbol{v} \circ \boldsymbol{u} \circ \boldsymbol{v} + \boldsymbol{v} \circ \boldsymbol{v} \circ \boldsymbol{v} \circ \boldsymbol{u}$

which can be shown to be proportional to the rank-4 tensor (3).

Maximal rank

Example

EXAMPLE 3

Tensor of dimension 2 and rank 4:

$$T = 8 (u + v)^{\circ 4} - 8 (u - v)^{\circ 4} - (u + 2v)^{\circ 4} + (u - 2v)^{\circ 4}$$
(3)

where \boldsymbol{u} and \boldsymbol{v} are not collinear

A tensor sequence in \mathcal{Y}_r can converge to a limit in \mathcal{Y}_{r+h}

2006

 \succ A tensor sequence in \mathcal{Y}_r can converge to a limit in \mathcal{Y}_{r+h}

2006

Why is it possible?

Proposition 2

Given a set of vectors $\boldsymbol{u}[i] \in \mathbb{C}^N$ that are not pairwise collinear, there exists some integer d such that $\{\boldsymbol{u}^{\circ d}\}$ are *linearly independent*.

Related results in [Sidi-Bro-J.Chemo'2000]

P.Comon

Nullstellensatz

Hilbert's zero theorem

David Hilbert (1862-1943)

Genericity

Intuitive

- A property is $typical \Leftrightarrow$ is is true on a non zero volume set
- A property is *generic* \Leftrightarrow is is true almost everywhere

Mathematical

- DEFINITION r is a typical rank if (density argument with Zariski): \overline{Z}_r is the whole space
- **DEFINITION** Generic rank is *the typical rank when unique*

Generic rank in $\ensuremath{\mathbb{C}}$

Existence

LEMMA (in either \mathbb{R} of \mathbb{C} , either symmetric or not) Strictly increasing series of $\overline{\mathcal{Y}}_k$ for $k \leq \overline{R}$, then constant:

$$\overline{\mathcal{Y}}_1 \subset_{\neq} \overline{\mathcal{Y}}_2 \subset_{\neq} \ldots \subset_{\neq} \overline{\mathcal{Y}}_{\overline{R}} = \overline{\mathcal{Y}}_{\overline{R}+1} = \ldots \mathcal{T}$$

which guarantees the existence of a unique \overline{R}

• **PROPOSITION 5** For tensors in \mathbb{C} If $r_1 < r_2 < \overline{R}$, then

$$\overline{\mathcal{Z}}_{r_1} \subset \overline{\mathcal{Z}}_{r_2} \subset \overline{\mathcal{Z}}_{\overline{R}} \tag{4}$$

• **PROPOSITION 6** For tensors in \mathbb{C} If $\overline{R} < r_3 \leq R$, then

$$\overline{\mathcal{Z}}_{\overline{R}} \supset \overline{\mathcal{Z}}_{r_3} \supseteq \overline{\mathcal{Z}}_R$$

 \triangleright Prove that \overline{R} is the generic rank in \mathbb{C}

2006

Generic rank

e.g. binary quartics in $\ensuremath{\mathbb{C}}$

Generic rank in \mathbb{C}

Computation based on a mapping

Symmetric

$$\begin{aligned} \{ \boldsymbol{u}(\ell), \ 1 \leq \ell \leq r \} & \stackrel{\varphi}{\longrightarrow} \ \sum_{\ell=1}^{r} \boldsymbol{u}(\ell)^{\circ d} \\ \{ \mathbb{C}^{n} \}^{r} & \stackrel{\varphi}{\longrightarrow} \ \mathcal{S} \end{aligned}$$

Asymmetric

$$\begin{aligned} \{ \boldsymbol{u}(\ell), \boldsymbol{v}(\ell), \dots, \boldsymbol{w}(\ell), \ 1 \leq \ell \leq r \} & \stackrel{\varphi}{\longrightarrow} \ \sum_{\ell=1}^{r} \boldsymbol{u}(\ell) \circ \boldsymbol{v}(\ell) \circ \dots \circ \boldsymbol{w}(\ell) \\ \{ \mathbb{C}^{n_1} \circ \dots \circ \mathbb{C}^{n_d} \}^r & \stackrel{\varphi}{\longrightarrow} \ \mathcal{A} \end{aligned}$$

Rank

The rank of the Jacobian of φ equals $\dim(\overline{Z}_r)$, and hence D for large enough r.

The smallest r for wich $rank(\text{Jacobian}(\varphi)) = D$ is \overline{R} .

2006

Generic rank in \mathbb{C}

Example of computation

$$\{\boldsymbol{a}(\ell), \boldsymbol{b}(\ell), \boldsymbol{c}(\ell)\} \xrightarrow{\varphi} \boldsymbol{T} = \sum_{\ell=1}^r \boldsymbol{a}(\ell) \circ \boldsymbol{b}(\ell) \circ \boldsymbol{c}(\ell)$$

In the canonical basis, \boldsymbol{T} has coordinate vector:

$$\sum_{\ell=1}^r \boldsymbol{a}(\ell) {\otimes} \, \boldsymbol{b}(\ell) {\otimes} \, \boldsymbol{c}(\ell)$$

Hence the Jacobian of φ is the $r(n_1 + n_2 + n_3) \times n_1 n_2 n_3$ matrix:

$$\boldsymbol{J} = \begin{bmatrix} \boldsymbol{I}_{n_1} & \otimes & \boldsymbol{b}^{\mathsf{T}}(1) & \otimes & \boldsymbol{c}^{\mathsf{T}}(1) \\ \boldsymbol{I}_{n_1} & \otimes & \dots & \otimes & \dots \\ \boldsymbol{I}_{n_1} & \otimes & \boldsymbol{b}^{\mathsf{T}}(r) & \otimes & \boldsymbol{c}^{\mathsf{T}}(r) \\ \boldsymbol{a}(1)^{\mathsf{T}} & \otimes & \boldsymbol{I}_{n_2} & \otimes & \boldsymbol{c}^{\mathsf{T}}(1) \\ \dots & \otimes & \boldsymbol{I}_{n_2} & \otimes & \boldsymbol{c}^{\mathsf{T}}(1) \\ \dots & \otimes & \boldsymbol{I}_{n_2} & \otimes & \boldsymbol{c}^{\mathsf{T}}(r) \\ \boldsymbol{a}(1)^{\mathsf{T}} & \otimes & \boldsymbol{I}_{n_2} & \otimes & \boldsymbol{c}^{\mathsf{T}}(r) \\ \boldsymbol{a}(1)^{\mathsf{T}} & \otimes & \boldsymbol{b}(1)^{\mathsf{T}} & \otimes & \boldsymbol{I}_{n_3} \\ \dots & \otimes & \dots & \otimes & \boldsymbol{I}_{n_3} \\ \boldsymbol{a}(r)^{\mathsf{T}} & \otimes & \boldsymbol{b}(r)^{\mathsf{T}} & \otimes & \boldsymbol{I}_{n_3} \end{bmatrix}$$

 $rank(\mathbf{J}) = dim(\operatorname{Im}(\varphi)) \text{ and } \overline{R} = Min\{r : \operatorname{Im}\{\varphi\} = \mathcal{A}\}$

Generic rank $\bar{R}(d,n)$ in $\mathbb C$

Results

Symmetric

$\begin{bmatrix} & n \\ d & \end{bmatrix}$	2	3	4	5	6	
3	2	4	5	8	10	$\left \bar{R} \ge \frac{1}{n} \left(\begin{smallmatrix} n+d-1 \\ d \end{smallmatrix} \right) \right $
4	3	6	10	15	21	

Asymmetric

$\begin{bmatrix} n \\ d \end{bmatrix}$	2	3	4	5	6	,
3	2	5	7	10	14	$\bar{R} \ge \frac{n^d}{nd-d+1}$
4	4	9	20	37	62	

bold: exceptions to the ceil rule

Exceptions to the ceil rule

THEOREM For d > 2, the generic rank of a *d*th order symmetric tensor of dimension *n* is always equal to the lower bound

$$\bar{R}_s = \left\lceil \frac{\binom{n+d-1}{d}}{n} \right\rceil \tag{5}$$

except for the following cases: $(d, n) \in \{(3, 5), (4, 3), (4, 4), (4, 5)\}$, for which it should be increased by 1.

Proof see Alexander-Hirschowitz theorem on multivariate interpolation (cf. appendix).

Classification of ternary cubics

 $3 \times 3 \times 3$

P.Comon

Dimension of solutions

Calculation

• Asymmetric
$$d = 3$$

 $F(n_1, n_2, n_3) = (n_1 + n_2 + n_3 - 2) \overline{R} - n_1 n_2 n_3$

• Asymmetric square $F(n) = (nd - d + 1)\overline{R} - n^d$

• Symmetric $F(n) = n \bar{R} - {n+d-1 \choose d}$

Dimension of solutions

Uniqueness

Symmetric

$\begin{bmatrix} & n \\ d & \end{bmatrix}$	2	3	4	5	6
3	0	2	0	5	4
4	1	3	5	5	0

Asymmetric

$\begin{array}{c} & n \\ d & \end{array}$	2	3	4	5	6
3	0	8	6	5	8
4	4	0	4	4	6

➤ Insights on uniqueness

P.Comon

Dimension of solutions

General tool

General tool to assess uniqueness

EXAMPLE Indscal:

$$oldsymbol{X}_{ijk} = \sum_{\ell} A_{i\ell} \, A_{j\ell} \, C_{k\ell}$$

EXAMPLE Parafac2:

$$oldsymbol{X}_{ijk} = \sum_\ell A_{i\ell}\,B_{j\ell}\,C_{jk\ell}$$

with constraints **EXAMPLE** :

$$oldsymbol{X}_{ijk} = \sum_{\ell} A_{i\ell} \, B_{j\ell} \, C_{jk\ell} \, D_{ik\ell}$$

with constraints

Typical ranks in \mathbb{R}

Lack of uniqueness in $\ensuremath{\mathbb{R}}$

- Draw randomly entries of a tensor $\in \mathcal{T}(n,d)$ according to a distribution q(t)
- Typical ranks do not depend on q(t), if c.d.f. absolutely continuous (no point-like mass). Only volumes of Z_r do.
- \blacksquare Typical ranks depend on (n,d)

EXAMPLE 4 $2 \times 2 \times 2$ asymmetric tensors

- drawn according to Gaussian symmetric \Rightarrow {2(57%), 3(43%)}
- drawn according to Gaussian asymmetric \Rightarrow {2(80%), 3(20%)}

More on this matter: [ten Berge] [Stegeman]

Ranks in \mathbb{R}

vs rank in $\ensuremath{\mathbb{C}}$

• $\forall T$ real tensor, rank in \mathbb{R} always larger than rank in \mathbb{C} :

 $rank^{\mathbb{C}}(\boldsymbol{T}) \leq rank^{\mathbb{R}}(\boldsymbol{T})$

In particular:

generic rank \leq typical ranks

Example 5

$$\boldsymbol{T}(:,:,1) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \boldsymbol{T}(:,:,2) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

• If decomposed in \mathbb{R} , it is of rank 3:

$$\boldsymbol{T} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{\circ 3} + \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}^{\circ 3} - 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix}^{\circ 3}$$

• whereas it admits a CAND of rank 2 in \mathbb{C} :

$$\boldsymbol{T} = \frac{\jmath}{2} \left(\begin{array}{c} -\jmath \\ 1 \end{array} \right)^{\circ 3} - \frac{\jmath}{2} \left(\begin{array}{c} \jmath \\ 1 \end{array} \right)^{\circ 3}$$

Future works

Results

- Generic rank *unique and known* in CanD for every (d, n)
- $\blacksquare Rank = Symmetric Rank \quad (partial)$
- \mathcal{Y}_r is never closed for 1 < r < R and 2 < d (partial)
- Generic rank can be computed for any d-way model
- $\blacksquare \mathbb{C}$ easier than $\mathbb{R}:$ some hope to have more general results

Open questions

- Maximal achievable ranks as a function of (d, n)?
- What does "*low-rank approximation*" means for tensors when rank> 1?
- Only 2 *typical* ranks may exist for \mathbb{R} tensors?

APPENDIX

Dimension 2: Sylvester

2x2x...x2

Sylvester's theorem in $\ensuremath{\mathbb{C}}$

A binary quantic $p(x, y) = \sum_{i=0}^{d} c(i) \gamma_i x^i y^{d-i}$ can be written as a sum of *d*th powers of *r* distinct linear forms:

$$p(x,y) = \sum_{j=1}^{r} \lambda_j \left(\alpha_j x + \beta_j y\right)^d, \tag{6}$$

if and only if (i) there exists a vector \boldsymbol{g} of dimension r + 1, with components g_{ℓ} , such that

$$\begin{bmatrix} \gamma_0 & \gamma_1 & \cdots & \gamma_r \\ \vdots & & \vdots \\ \gamma_{d-r} & \cdots & \gamma_{d-1} & \gamma_d \end{bmatrix} \boldsymbol{g}^* = \boldsymbol{0}.$$
(7)

and (ii) the polynomial $q(x,y) \stackrel{\text{def}}{=} \sum_{\ell=0}^r g_\ell x^\ell y^{r-\ell}$ admits r distinct roots

2006

Alexander-Hirschowitz Theorem

Polynomial interpolation

Let $\mathcal{L}(d, m)$ be the space of hypersurfaces of degree at most d in mvariables. This space is of dimension $D(m, d) \stackrel{\text{def}}{=} \binom{m+d}{d} - 1$.

THEOREM Denote $\{p_i\}$ *n* given distinct points in the complex projective space \mathbb{P}^m . The dimension of the linear subspace of hypersurfaces of $\mathcal{L}(d,m)$ having multiplicity at least 2 at every point p_i is:

$$D(m,d) - n(m+1)$$

except for the following cases:

•
$$d = 2$$
 and $2 \le n \le m$

• $d \ge 3$ and $(m, d, n) \in \{(2, 4, 5), (3, 4, 9), (4, 1, 14), (4, 3, 7)\}$

In other words, there are a *finite number* of exceptions.