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Tensors & Arrays

Definitions

Table T = {T}; 1}
m Order d of T % # of its ways = # of its indices
m Dimension ny o range of the fth index

m T is Square when all dimensions ny = n are equal

m T is Symmetric when it is square and when its entries do not
change by any permutation of indices
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Tensors & Arrays

Properties

m Outer (tensor) product C' = A o B:
Cij..ﬁab..c — Az’j.[ Bap..c
EXAMPLE 1 outer product between 2 vectors: uov = uv'

m Multilinearity.  An order-3 tensor T is transformed by the
multi-linear map {A, B, C} into a tensor T":

ik = Z AiaBjpCleT e

abe

Similarly: at any order d.
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Tensors & Arrays

Example
EXAMPLE 2
Take
v — 1
S\ =1
Then
o3 — 1 —1/—-1 1
S\ =1 1 1 =1

This is a “rank-1"7 symmetric tensor
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Usefulness of symmetric arrays
CanD/PARAFAC vs ICA

m CanD/PARAFAC: - F o+
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Usefulness of symmetric arrays
CanD/PARAFAC vs ICA

m CanD/PARAFAC: - 4o

PARAFAC cannot be used when:
e Lack of diversity
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Usefulness of symmetric arrays
CanD/PARAFAC vs ICA

m CanD/PARAFAC: - 4o

PARAFAC cannot be used when:
e Lack of diversity

e Proportional slices
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Usefulness of symmetric arrays
CanD/PARAFAC vs ICA

m CanD/PARAFAC: - F o+

PARAFAC cannot be used when:

e Lack of diversity
e Proportional slices

e Lack of physical meaning (e.g.video)

o
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Usefulness of symmetric arrays
CanD/PARAFAC vs ICA

m CanD/PARAFAC: - F o+

PARAFAC cannot be used when:

e Lack of diversity
e Proportional slices

e Lack of physical meaning (e.g.video)

o

m Then use Independent Component Analysis (ICA) [Comon’1991]

ICA: decompose a cumulant tensor instead of the data tensor
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Usefulness of symmetric arrays
Independent Component Analysis (ICA)

Advantages of ICA

m One can obtain a tensor of arbitrarily large order from a single
data matriz.

Drawbacks of ICA

m One dimension of the data matriz must be much larger than the
other

m Additional computational cost of the Cumulant tensor
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Tensors and Polynomials

Bijection

EXAMPLE 6 (d,n) = (3,2)

p(T1, T9) = Zij,k_l Tiji ©i x5 x,

A
T(o 11 0)

1 0/00 ad

= plx) =322, =3z
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Tensors and Polynomials

Bijection

m Symmetric tensor of order d and dimension n can be associated
with a unique homogeneous polynomial of degree d in n variables:

pa) = Y1 /) )

e integer vector j of dimension d <« integer vector f(j) of
dimension n

e entry fi of f(7) being o #of times index k appears in j
e We have in particular | f(7))| = d.

. : def ' f
m Standard conventions 7 < [[7_, 2% and |£| © 20, fp, where

7 and f are integer vectors.
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Orbits

Definition

m General Linear group GL: group of invertible matrices

m Orbit of a polynomial p: all polynomials ¢ that can be transformed

into p by A € GL: q(x) = p(Ax).

m Allows to classify polynomials
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Quadrics

quadratic homogeneous polynomials

m Binary quadrics (2 X 2 symmetric matrices)

e Orbits in R: {0, 22, 22+ 2, 2% — y2}
0 2zy € O(z? — y*) in Rz, y]

e Orbits in C: {0, 2, 1? + yQ}
0 2zy € O(2® +4%) in Clz, ]

m Set of singular matrices is closed

m Set ), of matrices of at most rank r is closed
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Spaces of tensors

dimensions

m A,: square asymmetric of dimensions n and order d

0 dimension D, (n, d) = n*
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Spaces of tensors

dimensions

m A,: square asymmetric of dimensions n and order d
0 dimension D, (n, d) = n*

m §,: square symmetric of dimensions n and order d

0 dimension D_(n,d) = (et

quadric | cubic | quartic | quintic | sextic
n\d 2 3 4 5 §
2 3 4 5 6 7
3 6 10 15 21 28
4 10 20 35 56 84
5 15 35 70 126 210
6 21 56 126 252 462

Number of free parameters in a symmetric tensor

I3S
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Definition of Rank

CAND

m Any tensor can always be decomposed (possibly non uniquely) as:
T=> u@)ov(i)o... w(i) (2)
i=1

m DEFINITION

def ..
Tensor rank = minimal # of terms necessary

m This Canonical decomposition (CAND) holds valid in a ring

m The CAND of a multilinear transform = the multilinear transform

of the CAND:
olf T L7 by a multilinear transform (A, B, C),

e then (u,v,.w) £, (Au, Bv,..Cw)
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Ranks are difficult to evaluate
Clebsch theorem

Alfred Clebsch (1833-1872)

The generic ternary quartic cannot in general be written as the sum
of b fourth powers

m D(3,4) =15
m 31 free parameters in the CAND

m But » = 5 is not enough — r = 6 is generic
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Questions

. Rank vs Symmetric rank in &,

. Generic rank, Typical rank

Differences between S, and A,

. Rank and CAND of a given tensor

Uniqueness

Closeness of sets of given rank

. Maximal rank in S,, or A,

. Differences between R and C
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Symmetric rank vs rank

given a symmetric tensor, I', one can decompose it as
m a sum of symmetric rank-1 tensors
m a sum of rank-1 tensors

[1 Is the rank the same?

LEMMA rank(T) < ranks(T)
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Symmetric CAND vs CAND

m Let T' € § symmetric tensor, and its CAND:

T=) T,
k=1
where T, are rank-1.

m PROPOSITION 1
If the constraint T, € S is relaxed, then the rank is still the same

m But T'.’s need not be each symmetric when solution is not
essentially unique

Proof. Generically when rank < dimension, Always in dimension 2
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Topology of polynomials

definition

m Every elementary closed set o varieties, defined by p(ax) = 0
m Closed sets = finite union of varieties

m Closure of a set £: smallest closed set € containing £

[I called Zariski topology in C
[1 this is not Euclidian topology, but results still apply
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Tensor subsets

m Set of tensors of rank at most r with values in C:
V.=AT €T :r(T)<r}
m Set of tensors of rank exactly r: Z, ={T €T : r(T) =r}

Z:yr_yr—17 r>1

m Zariski closures: YV, Z,.

m PROPOSITION 3
24 is closed but not Z,, r > 1 (intuitively obvious)

[Burgisser’97| [Strassen’83]

EXAMPLE
T.=Ty+ecy™, Ty 2,4
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Lack of closeness of ),

PROPOSITION 4 If d > 2, ), is not closed for 1 < r < R.

Proof. 4 Sequence of rank-2 tensors converging towards a rank-4:

T. = é [(u+cv)* —u®]

In fact, as ¢ — 0, it tends to:

Ty=uovovov+vVoUoOVoOV+VoOVOUOV+VOVOVOU

which can be shown to be proportional to the rank-4 tensor (3).
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Maximal rank

Example

EXAMPLE 3
Tensor of dimension 2 and rank 4:

T=8u+v)"*—8u—v)"—(u+20)°"+(u—-2v)°" (3

where uw and v are not collinear
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Lack of closeness of ),

Successive sets YV, = {T : rank(T) <r}

[J A tensor sequence in Y, can converge to a limit in YV,
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Lack of closeness of ),

Successive sets YV, = {T : rank(T) <r}

[J A tensor sequence in Y, can converge to a limit in YV,
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Lack of closeness of ),

Successive sets YV, = {T : rank(T) <r}

[J A tensor sequence in Y, can converge to a limit in YV,
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Lack of closeness of ),

Successive sets YV, = {T : rank(T) <r}

[J A tensor sequence in Y, can converge to a limit in YV,
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Lack of closeness of ),

Successive sets YV, = {T : rank(T) <r}

[J A tensor sequence in Y, can converge to a limit in YV,
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Lack of closeness of ),

Successive sets YV, = {T : rank(T) <r}

[J A tensor sequence in Y, can converge to a limit in YV,
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Why is it possible?

PROPOSITION 2
Given a set of vectors u[i] € CV that are not pairwise collinear,
there exists some integer d such that {u°?} are linearly independent.

Related results in [Sidi-Bro-J.Chemo’2000]
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Nullstellensatz

Hilbert’s zero theorem

David Hilbert (1862-1943)
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Genericity

Intuitive
m A property is typical < is is true on a non zero volume set

m A property is generic < is is true almost everywhere

Mathematical

m DEFINITION 7 is a typical rank if (density argument with Zariski):
Z, is the whole space

m DEFINITION Generic rank is the typical rank when unique
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Generic rank in C

Existence

m LEMMA  (in either R of C, either symmetric or not)
Strictly increasing series of YV, for k < R, then constant:

y1C%y2C%...C#yﬁzy}—%+l =...T

which guarantees the existence of a unique R

m PROPOSITION 5  For tensors in C
[fr <ry< E, then

Z,CZ,CZ5 (4)

m PROPOSITION 6 For tensors in C
If R<r3 <R, then

zﬁDzrg QER
C

[0 Prove that R is the generic rank in
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Generic rank

e.g. binary quartics in C

Zl ZQZ.yZ_Zl
7

Zs = W3—2) — 2 Zy=YV1— Y3
T2 -2, Z,
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Generic rank in C

Computation based on a mapping

Symmetric

{u(l), 1<<r} BN iu(ﬁ)od
(=1
{cry = S8
Asymmetric
{u(l),v(0),...,wl),1<l<r} = Zu(ﬁ) ov(f)o...ow(l)
(=1

{CMo.. . oCU}) 2 A

Rank
The rank of the Jacobian of ¢ equals dim(Z,), and hence D for large

enough r.
(0 The smallest r for wich rank(Jacobian(p)) = D is R.
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Generic rank in C

Example of computation

{a(0),b(0),c(0)} =T = a(l)ob(t)oc(l)
(=1

In the canonical basis, T' has coordinate vector:

S aljobDe ()
(=1
Hence the Jacobian of ¢ is the r(ny + ns + n3) X ningong matrix:
I, ® b'(1) ® c'(1)]
r, © ... ® ...
I, ® b'(r) ® c'(r)
al)' ® I, ® c'(1)
J = oo I, ® ...
ar)'" ® I,, ® c'(r)
a(l)' @ b(1)" @ In
® ® In,
L a(r)’ @ b(r)" © I,

rank(J)= dim(Im(p)) and R= Min{r : Im{p} = A}
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Generic rank R(d,n) in C

Results
Symmetric
a "2 3 4 5 6
3 4 5 8 10| R>1L(m

4 3 6 10 15 21

Asymmetric
a2 3 4 5 6

3 2 5] 7 10 14
4 4 9 20 37 62

B _n_
R Z nd—d+1

bold: exceptions to the ceil rule
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Exceptions to the ceil rule

THEOREM  For d > 2, the generic rank of a dth order symmetric
tensor of dimension n is always equal to the lower bound

n

except for the following cases: (d,n) € {(3,5), (4,3), (4,4), (4,5)}, for
which it should be increased by 1.

Proof  see Alexander-Hirschowitz theorem on multivariate
interpolation (cf. appendix).
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Classification of ternary cubics
3x3x3

g7 —orbit

73

2%y + xy?

T2y

23+ 32

23+ 1P + 6 2y2

23+ 6 xy2

a(z?+y* + 2°) + 6bayz
T2+ y2,z

(p)

S

(generic)

Ul B W N =

313

331

Maximal rank George Salmon (1819-1904)
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Dimension of solutions

Calculation

m Asymmetric d = 3
F(nl,ng,ng) = (n1 + N9 + N3y — 2)R—n1n2n3

m Asymmetric square
F(n)=(nd—d+1)R—n?

m Symmetric

Fn)=nR - (n+§_1)
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Dimension of solutions

Uniqueness
Symmetric
a | 2 3 4 D §
3 2 0 4

4 1 3 5] 5 0

Asymmetric
a2 3 4
3 0 8 6
4 4 0 4 4 6

[ Insights on uniqueness
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Dimension of solutions

General tool

General tool to assess uniqueness
EXAMPLE Indscal:

Xijr = Z Air Ajr Ciy
(

EXAMPLE Parafac2:

Xk = Z Ait Bio Ciie
(

with constraints
EXAMPLE

Xijr = Z Ait Bjo Cjge Digy
(

with constraints
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Typical ranks in R

Lack of uniqueness in R

m Draw randomly entries of a tensor € 7 (n,d) according to a
distribution ¢(t)

m Typical ranks do not depend on ¢(t), if c.d.f. absolutely continuous
(no point-like mass). Only volumes of Z, do.

m Typical ranks depend on (n, d)

EXAMPLE 4 2 X 2 X 2 asymmetric tensors
e drawn according to Gaussian symmetric = {2(57%), 3(43%)}
e drawn according to Gaussian asymmetric = {2(80%), 3(20%)}

More on this matter: [ten Berge] [Stegeman]

ﬁfozv%
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Ranks in R

vs rank in C

m VT real tensor, rank in R always larger than rank in C:

rank™(T) < rank™(T)

m In particular:
generic rank < typical ranks

EXAMPLE 5

T(, 1) (_é (1)) T(.:2) = (? é)

e If decomposed in R, it is of rank 3:

03 03 o3
1 1 1 1 1
-5 (1) () 2 (0)

e whereas it admits a CAND of rank 2 in C:
0 (=\" ()"
Té( 1) —5(1)
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Future works

Results

m Generic rank unique and known in CanD for every (d, n)
m Rank = Symmetric Rank (partial)

m ), is never closed for 1 <r < Rand 2 <d (partial)

m Generic rank can be computed for any d—way model

m C easier than R: some hope to have more general results
Open questions

m Mazimal achievable ranks as a function of (d,n)?

m What does " low-rank approximation” means for tensors when
rank> 17

m Only 2 typical ranks may exist for R tensors?
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APPENDIX
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Dimension 2: Sylvester
2x2xX...x2

Sylvester’s theorem in C
A binary quantic p(z, y) = 320, (i) v 'y~ can be written as a sum
of dth powers of r distinct linear forms:

plx,y) = Z A (o + B y)", (6)

if and only if (i) there exists a vector g of dimension r + 1, with
components gy, such that

Yoo Y1 o r
: | g"=0. (7)
Yd—r - Vd—-1 Vd

and (ii) the polynomial ¢(x,y) & S o gexty" admits r distinct
roots
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Alexander-Hirschowitz Theorem

Polynomial interpolation

Let L(d, m) be the space of hypersurfaces of degree at most d in m

variables. This space is of dimension D(m, d) o (m;d) — 1.

THEOREM Denote {p;} n given distinct points in the complex
projective space P™. The dimension of the linear subspace of
hypersurfaces of L£(d, m) having multiplicity at least 2 at every point

p; 1s:

D(m,d) —n(m+ 1)

except for the following cases:
ed=2and2<n<m
e d>3and (m,d,n) € {(24,5),(3,4,9),(4,1,14),(4,3,7)}

In other words, there are a finite number of exceptions.
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