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1. Typical rank of three-way arrays:  

What changes when slices are symmetric? 

 

2. Best known application:  

INDSCAL-related fitting problem, based on  

Carroll & Chang conjecture that CP produces  

A=B.  

 

3. Evaluation of conjecture in low-rank  

    approximation cases 

  

4. Evaluation of conjecture in full rank 

decomposition cases 

•  How to find A ≠ B for  

4×3×3 arrays of rank 5.  

•  How to fix the problem.  
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Definition: 

The rank of a three-way array is  

smallest number of rank-one arrays 

(outer products of three vectors) 

that have the array as their sum.  

 

Equivalent definition:  

The rank of a three-way array is the 

smallest number of components that  

admits perfect fit in CP.  

 

When X is I×J×K array of rank r, r is smallest 

number of components admitting decomposition  

 

Xk=ACkB′, 

 

with A I×r, B J×r, and Ck r×r (diagonal), 

k=1,…,K.  
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Array formats have maximal and typical rank: 

 

Example: 2×4×4 array. Slices X1 and X2.  

When 4 eigenvalues of X1
-1X2 complex,  

array can be transformed to  

 

Y1=

























−

−

1000

0100

0010

0001

 and Y2=

























000

000

0001

0010

b

b
,  

 

with b ≠ 0 (Rocci & Ten Berge, 2002).  

 

Result: Rank is 5 when b2≠1, and 6 otherwise.  

 

Also: When 4 eigenvalues real, rank is 4;  

when 2 real, rank is 5.  

 

Conclusion: 2×4×4 array has typical rank {4, 5}, 

and maximal rank 6.  
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Focus on typical rank  

 

Theory: Basic fact about three-way arrays.  

Practice: Hybrid models in between CP  

and Tucker-3-way PCA: Simple core  

with rank less than typical rank is model 

instead of tautology (Ten Berge, 2004) 

 

 

 

What do we know of typical ranks?  
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Typical rank results for arrays with K=2 and K=3 

  K=2     K=3  

 J=2 J=3 J=4   J=3 J=4 J=5 

I=2 {2,3} 3 4      

I=3 3 {3,4} 4  I=3 5 ? {5,6} 

I=4 4 4 {4,5}  I=4 {5,?} ? ? 

I=5 4 5 5  I=5 {5,6} ? ? 

I=6 4 6 6  I=6 6 ? ? 

I=7 4 6 7  I=7 7 ? ? 

I=8 4 6 8  I=8 8 {8,9} ? 

I=9 4 6 8  I=9 9 9 ? 

I=10 4 6 8  I=10 9 10 10 

I=11 4 6 8  I=11 9 11 11 

I=12 4 6 8  I=12 9 12 12 

 

 

Based on random sampling from continuous 

distribution of all elements of the array.  

 

 

What if slices are sampled to be symmetric?  
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Typical ranks, unconstrained I×J×J arrays 

Ten Berge & Stegeman (2006) 

 J=2 J=3 J=4 J=5 
I=2 {2,3} {3,4} {4,5} {5,6} 
I=3 3 5 6≤r 7≤r 
I=4 4 5≤r≤6 6≤r 7≤r 
I=5 4 {5,6} 6≤r 7≤r 
I=6 4 6 6≤r 7≤r 
I=7 4 7 7≤r 7≤r 
I=8 4 8 8≤r 8≤r 

 

Typical ranks, symmetric slice I×J×J arrays 

Ten Berge, Sidiropoulos & Rocci (2004) 

 J=2 J=3 J=4 J=5 
I=2 {2,3} {3,4} {4,5} {5,6} 
I=3 3 4 ? ? 
I=4 3 {4,5} ? ? 
I=5 3 {5,6} ? ? 
I=6 3 6 ? ? 
I=7 3 6 ? ? 
I=8 3 6 ? ? 
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Partial explanation of equal values.  

Which array formats admit rank-preserving 

transformations to symmetry (of slices)?  

(Ten Berge & Stegeman, 2006). 

 

Example I×4×4 array: We want SXi symmetric. 

Xi=[xi1|xi2|xi3|xi4], S=
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Symmetry means sj′xik = sk′xij. Find 

[s1′|s2′|s3′|s4′] orthogonal to columns of  
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Result: Solution with S nonsingular exists 

almost surely when there are two slices, or 

when there are three 2×2 slices.  
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Sometimes symmetric slices entail  

lower typical rank 

 

 

Example 4×2×2 array 

Asymmetric slices are linear comb of  
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Symmetric slices are linear comb of  
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Typical ranks 4 and 3, respectively. 

 

No cases found where symmetric slice arrays 

have higher typical rank than asymmetric 

counterparts.  
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Application of results on symmetric slices:  

INDSCAL-related scalar product fitting  

problem (Carroll & Chang, 1970). We need  

constrained CP-decomposition for symmetric  

slices  

Xi = ACiA′ + Ei    (1) 

CP can only fit Xi = ACiB′+Ei, with A and B  

J×r, Ci r×r (diagonal), i=1,…,K.  

 

C&C conjecture: Upon convergence of CP,  

A and B proportional columnwise. When 

conjecture false, CP unsuitable to fit (1).  

 

In most applications, conjecture seems correct. 

But there are exceptions, where A ≠ B.  

•  When precisely do exceptions occur?  

•  Do these cases admit alternative  

CP solution which does have A=B? 

•  If so, how do we find the alternative 

solution?  
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C & C conjecture in low rank approximations 

 

Ten Berge & Kiers (1991).  
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 Non-optimal stationary value 39 when 
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First order derivatives vanish, but A and B 

differ. Can only happen (r=1) with  

asymmetric estimates AC1B′ and AC2B′.  

 

Global minimum 21 of CP function for  
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Possibility: Under random sampling of the data 

from a continuous distribution, asymmetric 

estimates at stationary points of the least 

squares CP loss function arise with probability 

zero at global minima of the CP function.  

 

If true, then always A=B in low rank 

approximation cases at global minima.  
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C & C conjecture in perfect fit situation 

 

Ten Berge, Sidiropoulos and Rocci (2004) 

investigated when A=B is guaranteed in  

perfect fit situation  

 

•  When CP decomposition is unique, A=B.  

•  When number of slices I ≥ r, almost all 

solutions have A = B.  

Example: when 5×3×3 array has rank 5,  

all solutions have A = B almost surely. 

•  When k-rank of C satisfies kC ≥ r−J+2, we 

have A = B almost surely . 

(kC = largest number of columns of C that 

are linearly independent, no matter how  

we pick those columns) 

 

 

To find cases with A ≠ B, we need cases 

with I < r, and kC < r−J+2 
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Example: 4×3×3 array (symmetric slices) 

has typical rank {4,5}.  

When it has rank 4, I = r, and A=B.  

When it has rank 5, and kC < 4, we may 

have A ≠ B.  

 

Does kC < 4 ever arise?  

 

Numerical experiment (Ten Berge & 

Stegeman, 2007) 

 

Generate random 4×3×3 array, symmetric 

slices. Typical rank {4,5}. Check if rank is 5. 

Then run CP to convergence.  

Find null of C (4×5).  

o If it has no zeroes, kC = 4 so A = B.  

Run CP again.  

o Else, look if A and B differ.  
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Result: Low k-rank for C with A≠ B does occur 

with positive probability.  

 

 

Random 4×3×3 array of rank 5  

    1.1346    0.1630    1.8262 

    0.1630    0.1299    1.9809 

    1.8262    1.9809    2.1604 

   -2.1353   -0.2361    1.2687 

   -0.2361    2.3622    0.0724 

    1.2687    0.0724    0.9238 

    2.0254   -0.3567    0.1805 

   -0.3567    2.2626    0.5967 

    0.1805    0.5967    0.2767 

    3.4732   -0.2749   -0.9870 

   -0.2749   -0.4460    1.1702 

   -0.9870    1.1702    5.1791 
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 .5601 .2075 .0717 −.1597 .9106 

A .4775 .2568 .1646 .9832 −.0684 

 .6770 .9439 .9838 −.0880 −.4077 

      
 .3798 .7954 .3549 −.1597 .9106 

B .1659 .5854 .3529 .9832 −.0684 

 −−−−.9101 .1570 .8657 −.0880 −.4077 

      
null(C) .7040 .6594 .2636 .0000 .0000 

 

 

Why two columns equal? Premultiply C by 

inverse of columns 2-3-4-5. This yields 

−.9366 1.0000 .0000 .0000 .0000 

−.3744 .0000 1.0000 .0000 .0000 

.0000 .0000 .0000 1.0000 .0000 

.0000 .0000 .0000 .0000 1.0000 

 

Now slice 3 is a4b4′, slice 4 is a5b5′.  

So [a4 a5] = [b4 b5].  
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To see which other low k-ranks for C occur are 

possible with random arrays, we ran CP with 

constraint of low kC to see if it fits perfectly. 

(Paatero’s multilinear engine (1999) and home-

made alternative).  

 

 

 What happened?  

•  We never found kC = 1 as a possibility 

•  We found kC = 2 now and then, with A and 

B sometimes different 

•  We found kC=3 now and then, but then 

always A=B.  
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Explanation  

Rank criterion of Ten Berge-Sidiropoulos-Rocci 

(2004) for 4×3×3 arrays.  

If rank is 4, C can be transformed to I4 by slice 

mixing. So slices can be mixed to be of rank 1 

in four independent ways, which correspond to 

4 real roots of 4-th degree polynomial.  

 

Because real roots come in pairs, we have 

these possibilities 

1. Four real roots; rank 4.  

2. Two real roots; rank 5. The array admits 

two slice mixes of rank 1, with kC = 2.  
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3. No real roots; array rank 5. Low k-rank  

for C impossible. Hence A = B.  
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 What did our simulations show?  

•  We never found kC = 1. OK, because 3 

roots real implies 4 roots real, so rank = 4.  

•  We found kC = 2 now and then, with A and 

B often different 

•  We found kC=3 now and then, but then 

always with A=B.  

 

Why A=B when kC=3? There is slice mix with  
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Leave out slice 4, which has a unique factoring 

a4b4′. What remains is 3×3×3 with r=4 and  

kC = 3 ≥ r−J+2. A=B guaranteed.  
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Question 1:  

Does array admit a CP solution with low kC? 

 

Question 2:  

Do slices admit linear combinations of rank 

one?  

 

The more rank-one mixes are possible, the 

smaller kC can get.  

 

 

Back to 4×3×3 array: 

 no real roots ⇒ kC = 4 

 two real roots ⇒ kC = 2, 3 possible 

 four real roots ⇒ kC = 0, 1 possible ⇒ r = 4 
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How to fix a solution with A ≠ B, kC=2.  
 
 
 

 .5601 .2075 .0717 −.1597 .9106 

A .4775 .2568 .1646 .9832 −.0684 

 .6770 .9439 .9838 −.0880 −.4077 

      
 .3798 .7954 .3549 −.1597 .9106 

B .1659 .5854 .3529 .9832 −.0684 

 −−−−.9101 .1570 .8657 −.0880 −.4077 

      
null(C) .7040 .6594 .2636 .0000 .0000 

 

 

New C after slice mixing:  

−.9366 1.0000 .0000 .0000 .0000 

−.3744 .0000 1.0000 .0000 .0000 

.0000 .0000 .0000 1.0000 .0000 

.0000 .0000 .0000 .0000 1.0000 
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Leave out the two common components and 

last two slices. What remains is 2×3×3 with 

S1=AC1B′  S2=AC2B′, 

A and B square, r=3, kC=2. When A and B 

nonsingular, kA=kB=3, so kA+kB+kC=8 (unique). 

Hence A=B. Contradiction. So A (or B) has 

rank < 3.  

 

Let n be orthogonal to A. Construct orthonormal 

N with n as column 3. Then Y1=N′S1N and 

Y2=N′S2N has vanishing third row and third 

column. What remains is 2×2×2 which has A+ = 

B+. So Si = NYiN′ can be factored in 

components NA+=NB+, i=1, 2.  

 

 

Easier recipe: Set B = A and recompute C.  

 

Bottom line: Even when A ≠ B, we can fix the 

problem. Also in other cases. 
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Missing general result: Whenever CP solution 

has A ≠ B, an alternative solution exists which 

does have A = B.  
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