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1. Typical rank of three-way arrays:

What changes when slices are symmetric?

2. Best known application:
INDSCAL-related fitting problem, based on
Carroll & Chang conjecture that CP produces
A=B.

3. Evaluation of conjecture in low-rank

approximation cases

4. Evaluation of conjecture in full rank

decomposition cases
 How to find A # B for
4x3x3 arrays of rank 5.

* How to fix the problem.



Definition:
The rank of a three-way array is
smallest number of rank-one arrays
(outer products of three vectors)

that have the array as their sum.

Equivalent definition:
The rank of a three-way array is the
smallest number of components that

admits perfect fit in CP.

When X is IxJxK array of rank r, r is smallest

number of components admitting decomposition

Xk:ACkB',

with A Ixr, B Jxr, and Cy rxr (diagonal),
k=1,...,K.



Array formats have maximal and typical rank:

Example: 2x4x4 array. Slices X; and X,.
When 4 eigenvalues of X, 1Xo complex,

array can be transformed to

1 0 0 O 0 10 0
v 0 1 0 0 gy 000
0 0 1 0 000D
‘0 0 0 -1 00b O

with b # 0 (Rocci & Ten Berge, 2002).

Result: Rank is 5 when b*#1, and 6 otherwise.

Also: When 4 eigenvalues real, rank is 4;

when 2 real, rank is 5.

Conclusion: 2x4x4 array has typical rank {4, 5},

and maximal rank 6.



Focus on typical rank

Theory: Basic fact about three-way arrays.
Practice: Hybrid models in between CP
and Tucker-3-way PCA: Simple core

with rank less than typical rank is model

iInstead of tautology (Ten Berge, 2004)

What do we know of typical ranks?



Typical rank results for arrays with K=2 and K=3

K=2 K=3

J=2 J=3 J=4 J=3 J=4 J=5
=2 {23} 3 4
=3 3 {34} 4 =3 5 2 {56}
=4 4 4 {45} =4 {57} ? 2
=5 4 5 5 =5 {56} ? 2
=6 4 6 6 =6 6 2 2
=7 4 6 7 =7 7 2 2
=8 4 6 8 =8 8 {89} 2
=9 4 6 8 =9 9 9 ?
=10 4 6 8 =10 9 10 10
=11 4 6 8 =11 9 11 11
=12 4 6 8 =12 9 12 12

Based on random sampling from continuous

distribution of all elements of the array.

What if slices are sampled to be symmetric?



Typical ranks, unconstrained 1 xJ xJ arrays
Ten Berge & Stegeman (2006)
J=2 J=3 J=4 J=5

=2 {2,3} {3,4} {4,5} {5,6}
=3 3 5 o<r 7<r
=4 4 5<r<6 6<r 7<r
=5 4 {5,6} 6sr 7<r
=6 4 6 6<r 7<r
I=7 4 7 Tsr T<r
=8 4 38 8<r 8<r

Typical ranks, symmetric slice | xXJxJ arrays
Ten Berge, Sidiropoulos & Rocci (2004)
J=2 J=3 J=4 J=5

=2 {2,3} {3,4} {4,5} {5,6}
=3 3 4 ? ?
=4 3 {4,5} ? ?
=5 3 {5,6} ? ?
=6 3 6 ? 2
=7 3 6 ? ?
=8 3 6 ? 2




Partial explanation of equal values.
Which array formats admit rank-preserving
transformations to symmetry (of slices)?
(Ten Berge & Stegeman, 2006).

Example 1x4x4 array: We want SX; symmetric.

Xi=[Xi1|Xiz|Xiz|Xia], S=

Symmetry means s;'Xi = si'X;. Find

[S1'|S2'|S3'|s4'] orthogonal to columns of

“Xio X3 TXig 0 0 0]
i1 i2 i
0 0 X 0 X5 Xg

Result: Solution with S nonsingular exists
almost surely when there are two slices, or

when there are three 2x2 slices.



Sometimes symmetric slices entalil

lower typical rank

Example 4x2x2 array

Asymmetric slices are linear comb of
1 0|0 1]|0 0[O0 O
0 0/l0 o/|0 1/1 0]

Symmetric slices are linear comb of

4 5o oo 1)

0 0
Typical ranks 4 and 3, respectively.

No cases found where symmetric slice arrays
have higher typical rank than asymmetric

counterparts.



Application of results on symmetric slices:
INDSCAL-related scalar product fitting
problem (Carroll & Chang, 1970). We need
constrained CP-decomposition for symmetric
slices

X; = ACA' + E; (1)
CP can only fit X; = AC,B'+E;, with A and B
Jxr, C; rxr (diagonal), i=1,...,K.

C&C conjecture: Upon convergence of CP,
A and B proportional columnwise. When

conjecture false, CP unsuitable to fit (1).

In most applications, conjecture seems correct.
But there are exceptions, where A # B.
 When precisely do exceptions occur?
« Do these cases admit alternative
CP solution which does have A=B?

e |f so, how do we find the alternative

solution?
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C & C conjecture in low rank approximations

Ten Berge & Kiers (1991).

3 1 0 3 -1 Q0
X]_: 1 3 O,Xzz -1 3 0.
0 0 0 0 0 1

Non-optimal stationary value 39 when

" o
A=|0/,B= 1,andC:! 1}.
0| 0| 1

First order derivatives vanish, but A and B

differ. Can only happen (r=1) with

asymmetric estimates AC,B’' and AC,B’".

Global minimum 21 of CP function for
A=B= \/B,andC:ﬁ.
0 2
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Possibility: Under random sampling of the data
from a continuous distribution, asymmetric
estimates at stationary points of the least
squares CP loss function arise with probability

zero at global minima of the CP function.

If true, then always A=B in low rank

approximation cases at global minima.
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C & C conjecture in perfect fit situation

Ten Berge, Sidiropoulos and Rocci (2004)
Investigated when A=B is guaranteed in

perfect fit situation

 When CP decomposition is unique, A=B.
 When number of slices | = r, almost all
solutions have A = B.

Example: when 5x3x3 array has rank 5,
all solutions have A = B almost surely.
 When k-rank of C satisfies k¢ = r=J+2, we

have A = B almost surely .
(ke = largest number of columns of C that
are linearly independent, no matter how

we pick those columns)

To find cases with A # B, we need cases

with | <r, and k¢ < r=J+2
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Example: 4x3x3 array (symmetric slices)
has typical rank {4,5}.

When it has rank 4, | = r, and A=B.
When it has rank 5, and kc < 4, we may
have A # B.

Does ke < 4 ever arise?

Numerical experiment (Ten Berge &
Stegeman, 2007)

Generate random 4x3x3 array, symmetric
slices. Typical rank {4,5}. Check if rank is 5.
Then run CP to convergence.
Find null of C (4%5).
o If it has no zeroes, kc =4 so A = B.
Run CP again.
0 Else, look if A and B differ.
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Result: Low k-rank for C with A#B does occur

with positive probability.

Random 4x3x3 array of rank 5

1.1346
0.1630
1.8262
-2.1353
-0.2361
1.2687
2.0254
-0.3567
0.1805
3.4732
-0.2749
-0.9870

0.1630
0.1299
1.9809
-0.2361
2.3622
0.0724
-0.3567
2.2626
0.5967
-0.2749
-0.4460
1.1702

1.8262
1.9809
2.1604
1.2687
0.0724
0.9238
0.1805
0.5967
0.2767
-0.9870
1.1702
5.1791
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5601 | .207/5| .0717|-.1597| .9106

A A775| .2568 | .1646| .9832 | -.0684
.6770| .9439| .9838|-.0880 |-.4077

3798 | .7954| .3549|-.1597| .9106

B 1659 | .5854 | .3529| .9832|-.0684
-.9101| .1570| .8657|—-.0880|—-.4077
null(C)| .7040| .6594| .2636| .0000| .0000

Why two columns equal? Premultiply C by

Inverse of columns 2-3-4-5. This yields

-.9366|1.0000| .0000| .0000| .0000
—-.3744| .0000|1.0000| .0000| .0000
.0000| .0000| .0000|1.0000| .0000
.0000| .0000| .0000| .0000|1.0000

Now slice 3is asb,’, slice 4 is asbs'.
So [a4 as] = [b4 bs].
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To see which other low k-ranks for C occur are
possible with random arrays, we ran CP with
constraint of low k¢ to see if it fits perfectly.
(Paatero’s multilinear engine (1999) and home-

made alternative).

What happened?
 We never found kc = 1 as a possibility

 We found kc = 2 now and then, with A and

B sometimes different

 We found kc=3 now and then, but then

always A=B.
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Explanation
Rank criterion of Ten Berge-Sidiropoulos-Rocci
(2004) for 4x3x3 arrays.
If rank is 4, C can be transformed to I, by slice
mixing. So slices can be mixed to be of rank 1
In four independent ways, which correspond to

4 real roots of 4-th degree polynomial.

Because real roots come in pairs, we have
these possibilities

1. Four real roots; rank 4.

2. Two real roots; rank 5. The array admits

two slice mixes of rank 1, with k¢ = 2.

1 0 O
0 1
0 O
0 O

C'=

O < X

O - O
= O O O

0
3. No real roots; array rank 5. Low k-rank

for C impossible. Hence A = B.
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What did our simulations show?
 We never found ke = 1. OK, because 3
roots real implies 4 roots real, so rank = 4.
 We found kc: = 2 now and then, with A and
B often different
 We found kc=3 now and then, but then

always with A=B.

Why A=B when kc=37? There is slice mix with

O —» O O
b O O O
O N < X

© O - O

o o0 o -

Leave out slice 4, which has a unique factoring
asb,'. What remains is 3x3x3 with r=4 and

ke =3 =2r=J+2. A=B guaranteed.
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Question 1:

Does array admit a CP solution with low kc?

Question 2:
Do slices admit linear combinations of rank

one”?

The more rank-one mixes are possible, the

smaller k¢ can get.

Back to 4x3x3 array:
no real roots = kc = 4
two real roots = k¢ = 2, 3 possible

four real roots = kc = 0, 1 possible = r=4
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How to fix a solution with A # B, ke=2.

5601 | .2075| .0717|-.1597| .9106
A A4A775| .2568| .1646| .9832|-.0684
.6770| .9439| .9838 | -.0880|-.4077
3798 .7954 | .3549|-.1597| .9106
B 1659 | .5854| .3529| .9832|-.0684
—9101| .1570| .8657|-.0880|—-.4077
null(C)| .7040| .6594| .2636| .0000| .0000
New C after slice mixing:
-.9366|1.0000| .0000| .0000| .0000
—-.3744| .0000|1.0000| .0000| .0000
.0000| .0000| .0000|1.0000| .0000
.0000| .0000| .0000| .0000|1.0000
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Leave out the two common components and

last two slices. What remains is 2x3x3 with
S;:=AC,B' S,=AC,B’,

A and B square, r=3, kc=2. When A and B

nonsingular, ka=kg=3, so katkg+kc=8 (unique).

Hence A=B. Contradiction. So A (or B) has

rank < 3.

Let n be orthogonal to A. Construct orthonormal
N with n as column 3. Then Y;=N'S;N and
Y,=N'S,N has vanishing third row and third
column. What remains is 2x2x2 which has A" =

B*. S0 S; = NY;N' can be factored in
components NA"=NB", i=1, 2.

Easier recipe: Set B = A and recompute C.

Bottom line: Even when A # B, we can fix the

problem. Also in other cases.
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Missing general result: Whenever CP solution
has A # B, an alternative solution exists which

does have A = B.
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