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Motivations and preliminaries

Acknowledgement:

To Richard Harshman for his valuable comments, suggestions
and motivation on important issues of this work.

PARAFAC: no interaction between modes, unique (without
orthogonality constraints);

Tucker3: complete interaction between modes, nonunique
(rotational indeterminacy);

Mixed PARAFAC-Tucker3 models [Bro'98]:

x Constrained interactions involving factors different modes
(not as complete as in Tucker3 models);

+ Arise in some wireless signal processing problems:
- Multiantenna codings
- Blind beamforming
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Motivations and preliminaries

Mixed PARAFAC-Tucker3 decompositions:

+ Thinking “Tucker3-wise": constrained core tensor

+ Thinking “PARAFAC-wise": constrained factor matrices

Generalizing/combining PARAFAC and Tucker3 decompositions:

+x Decomposition in a sum of smaller Tucker3 blocks:
[De Lathauwer'05]

+x Decomposition in a sum of constrained PARAFAC blocks:
Special case of [De Lathauwer05]
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Constrained Block-PARAFAC formulation

The decomposition in scalar form (X € C/1*12x1s O blocks):

R(Q) R(Q)

(q) (q)
wzlzzzg—S S S a (q)b <q>C(q> NOWp

q= 1 qu)—l T;q)—l

Special case of [De Lathauwer’05];

[A@Y ¢ xR and {B@Y ¢ Cl2x R | (0@} ¢ CRY X R5Y x5

Set of matrices {C@} € Cls*x A" Ry defined as:

_ @ _
[C(q>]i3,(fr§q>—1)R§Q)—|—T§Q) ¢ (Q) (q)7 , ¢g=1,..., Q

Factorization as a sum of constrained PARAFAC blocks
[de AImeida et al. 05]:
@ T
X, = Z (A(q) R 1R<Q)) Di3(C(q)) (1£§q) R B(q)>
qg=1
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Constrained Block-PARAFAC formulation

Interaction patterns

Equivalences:

— (A(Q)®1)(IR§q>®1£gq)) A@ (IR(‘” 2 1R(q)) — A g,

7

"~

W (9)

(q) B = (1eB?)(1 R<q>®IR< ) = B(Q)(lggw ® IR§q>) = BWo(7;

7

~"

P (9)

Constraint matrices:

o) = lpw @ 1R<q>,

The sets {TD) ... ®(@ ) and {@1) ... &)} reveal the
interaction patterns within the different blocks;
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Constrained Block-PARAFAC formulation

Factorization using the constraint matrices

Q
X, = ZA(Q)\P(q)Dig(C(q>)(B(Q)<I>(Q))T.

q=1

Block factor matrices:

A = [AW . AQ)] ¢ chixi
B = [BW, ... B@] eClzxk
C = [CD, . .. C@] eClxhs

Q Q Q
Ri=> R”, Ro=Y RY, Ry=)» R{”RY.
qg=1 qg=1

qg=1
Block constraint matrices:
W = BlockDiag(®W ... ¥ Q) (R, x R3)
® = BlockDiag(®WY ..-®@)) (R, x R3)
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Constrained Block-PARAFAC formulation

Compact matrix-slice form:
X.;, = A¥D,; (C)(B®)".
Unfolded matrices:
X, = (CoA)(BP)!, X, = (B®cC)(AD), X3 =(AToB®)CT

Related to PARALIND models [Bro-Harsh-Sid’05]

Expansion using tensor products of canonical vectors:
Goal. Justify the introduction of the constraint matrices [de Almeida et al.’06]

X3 = YYT 21,%2,%3 (Il)® (IQ)) gs)

’I,1 1%2 1’1,3 1

I Is Q Ri Ro

SIS 50 35 30 30 3 SR R AR N

t1=110=113=1g=1r1=17r=1
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Some terminology and concepts

What can be said about constrained Block-PARAFAC ?

Factorization of a three-way array in a sum of () constrained
PARAFAC blocks, everyone of them being a function of three

component matrices A9, B(@ and C(9).

Within the same PARAFAC block, it is permitted that columns of
different component matrices are linearly combined to generate
the three-way data.

The interaction pattern is defined by the matrices (%) and &%
and may differ from block to block.

No interaction takes place between blocks.
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Some terminology and concepts

“Between-block" versus “Within-block" uniqueness:
[Terms coined by Harshman]

Unigueness concepts interpreted in two ways:
x Between-block uniqueness: synonym of separability of the @
blocks. Independent of the interaction structure.

x Within-block uniqueness: unique determination of the three
component matrices of the corresponding block (up to permutation
and scaling). Dependent of the particular interaction structure.

Connection with “partial” uniqgueness concepts:
+* PARAFAC case [Harshman'72] [ten Berge’'04] [Bro-Harsh-Sid’05]:

"When non-unique solutions occur ... uniqueness can partially or completely
“break down"..." [Harshman’72]

+ Constrained Block-PARAFAC case:

Uniqueness can break down ‘in parts” (within a block)... but also “between blocks"!
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Constrained Block-PARAFAC linked to Block-
Tucker3

Constrained Block-PARAFAC can be approached to Tucker3
analysis [Kiers&Smilde’98] [ten Berge&Smilde’02]:

Proposition: The constrained Block-PARAFAC decomposition is equivalent to
a “constrained Block-Tucker3" one, where the unfolded matrices of the every core
tensor block are column-wise orthogonal, i.e., the inner product of any two distinct
columns of every unfolded core matrix is equal to zero.

The link relies on the concept of block Khatri-Rao product | @ | :
Ao B= [A(1>®B(1), - ,A(Q)@)B(Q)]_
X3 = (AVoB®)C! = (A |®| B)F(¥,®)C’.

F(®,®) = BlockDiag(®Vo®) ... §(@ (@)
IR§1> IRé@
= X3 = (A |® B)G3C!, G; =15,

(Constrained Block-Tucker3 decomp.)
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Constrained Block-PARAFAC linked to Block-
Tucker3

Unfolded matrices X; and X5:
X; = (C|®| A)G;B”, X, = (B |®| C)GoA”,
Unfolded block-cores G; and Ga:

G, = Blocsz’ag(Ggl) . GgQ)) c (CR/XRQ’
Gy = BlockDiag(Ggl) . GgQ)) c CcR’ xR
, & @
R = Z Rg‘J)RéQ), R = Z R§q>R§Q)
qg=1 g=1

GgCI) — (IR§q> o Wl PDT GgQ) = (8D o1 (,))TDT

R:(SCI)

Are G{? and G¥ column-wise orthogonal ?
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Constrained Block-PARAFAC linked to Block-
Tucker3

We have:
GgQ)TGgQ) — q)(q)@(q)T _ Rg‘])]:

G;Q)TGgQ) _ \If(q)\IJ(Q)T _ qu)I

Column-wise orthogonality also for G; and G-

Constraint matrices from a PARAFAC perspective give rise to
orthogonal tensor cores from a Tucker3 perspective
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Uniqueness 1ssues

Uniqueness proof of constrained Block-PARAFAC relies on
Harshman'’s original proof of “minimum conditions" for PARAFAC
[Harshman'72].

The proof sheds light on the between-block resolution/separability
for constrained Block-PARAFAC.

Within-block uniqueness can be studied separately for each block,
possibly taking special (within-block) structures into account.

Different levels of “partial" uniqueness are possible for constrained
Block-PARAFAC
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Uniqueness 1ssues

Theorem: Assuming full rank A(@ ¢ ChxB? B(a) ¢ ¢l2xR5” gnd

C@ ¢ clxR"R" o — 1 . . Q,and linear independency of every set
(AW A@Y BO | B@1and {CD), ... C@} if:

Q Q Q
L1 >Y RYRY, 5LL;>Y RY, LI;>)Y RY".
qg=1

q=1 q=1

between-block uniqueness is achieved and A = AT,, B = BT}, and
C = CT. (up to permutation ambiguities).

T, = Bloc/cDiag(Tgl) Ce Tg@)’
T, = Blocsz'ag(Tél) ‘e TéQ))’
T. = BlockDiag(Tgl) o TEQ)%

—1

(TP oT”) =TV ¢=1,...Q
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Uniqueness 1ssues

Rotational freedom confined within the blocks;
(due to block-diagonal structure of T, T}, and T.)

Within-block rotational freedom is constrained;
(not as complete as for Tucker3)

Recovering of complete within-block uniqueness (g-th block):

« If C@ is known = T @ T\¥ =T;
* |f rotational indeterminacy T? is fixed;

Partial uniqueness arises if a subset of {T%", ..., T'?} or
(T!V, ... T\ is fixed.
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Uniqueness 1ssues

Blocks with equal interaction patterns

RV= . =R¥=R, and R{"=..=R\¥ =R,

Equivalent necessary condition:

I 1 I ]I Is1
min(—1£JL13JL23)ZQ-
R1 R R

For R, = R, = 1 (standard PARAFAC) the above condition
reduces to the necessary uniqueness conditions of [Liu-Sid’01].

A. de Almeida et al./ TRICAP2006 — June 05, 2006 — p.17



Partial uniqueness 1n constrained Block-
PARAFAC

Some blocks can be uniquely determined, while the remaining

ones are either nonunique or partially unique
= (breaking down of uniqueness between blocks)

For the remaining (no strictly unique) blocks:

Situation 1: Within-block nonuniqueness
All the corresponding component matrices affected by unknown
rotational indeterminacy;

Situation 2: Within-block partial uniqueness
Some component matrices (or a subset of their columns) uniquely
determined = (breaking down of uniqueness within a block)
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Partial uniqueness 1n constrained Block-
PARAFAC

Example 1:

() = 3 blocks

{R(l) R(l)} (1,1}, {a®, b(1) C(l)}
{R(Q) (2)} = {2,2}, {A(Q) 2)}

(R Ry = (1,2}, {a<3>,B<3>, Cc®)

Block-constraint matrices:

"1 00000 0] 1 00 0 0 0 O
O 1 1 0 0 0 O oL U000
U = , =10 0 1 0 1 0 O
0O 0 0 I 1 0 O
0O 0 0 0 0 1 O
0O 0 0 0 0 1 1
- - 00 00 0 0 1 |

Block 1: unique / Block 2: nonunique /
/(T? 2 TZ@) _ T(2)T/ T(()S)T _ -1
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Partial uniqueness 1n constrained Block-
PARAFAC

Example 2:
() = 3 blocks
RV, RV} ={1,2}, {a®),BM, CW}
(RP, RV =1{1,2}, {a® ,B®, C?)}
(R, RS = (1,2}, {a® ,B®,CO)}

Block-constraint matrices: - -

100000
- . 0100 00
1 100 00 0100

T=(001100]|, &=

000 10 0
0000 1 1
- - 0000 1 0
0000 0 1

=- Partial uniqueness in all the blocks
= Complete uniqueness in the first-mode
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Applications 1n Wireless Signal Processing

Some previous works using PARAFAC modeling in wireless
communications:
(DS-CDMA, OFDM, blind beamforming, multiantenna (MIMO) systems,...)

[Sidiropoulos et al.00-1]  [Sidiropoulos et al.00-2]  [Sidiropoulos&Dimic’01],
[Sidiropoulos&Liu'01]  [Sidiropoulos&Budampati’02]  [Jiang&Sidiropoulos’03]
[de Baynast&De Lathauwer'03] [de Baynast et al.03] [De Lathauwer'05]

Two classes of wireless communication problems formulated
using constrained Block-PARAFAC modeling:

+ Multiantenna coding
(with spatial spreading and single-antenna multiplexing)

+ Blind beamforming
(under specular propagation and large delay spread)

Constrained Block-PARAFAC structure arises in some of previous
works while generalizing some previously proposed three-way
models
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Application 1: Multiantenna coding

Space-Time Multiplexing Coding (STMC)

] N1
Input 1 i
sTMC | |f | \l\ <
A Output 1
(1) N
M 2 4+
£ N[ c
a 2 B9 Output 2
Input 2 A o f o2
— smme | |1i] 2 | ¢ . 88 |1—
[ ] L 0 .
v c . 8 ()] .
@) PC_.-’ . c D .
M T £ //‘ %4 - 0 Output Q
M, s
I
Input Q i NZ Vi
—{ STMC | | ] M',
@)
M;

Three-way array dimensions:

I = Mpg : Nb. of receive antennas

I, = N : Nb. of time-slots

Is = P : Nb. of coded symbols per time-slot (code length)
Model parameters:

(). Nb. of transmission groups (or users to be served)

R&q) — L(9: Np. spatially-multiplexed signals

(@) _ as(q). : :
Ry = My "2 Nb. of spreading transmit antennas A. de Almeida et al./ TRICAP2006 — June 05, 2006 — p.22



Application 1: Multiantenna coding

(g) (9)
Cl J,D hl,l

D) (@)
S(q) 1 -+ /7 xl A, D
3
R
W(Gf) . ® .
. P *

(Q") 1@ p-th slice ®h(‘3)
L(‘i')% M'i:“ﬂ?) ® 1M(Q‘) .

(¢) (¢)
MDD x 1@ Cofi) 1y kMR e

Decomposition of the received signal as a three-way array:

Q M(Q) (D)
E : § : (q) § : (q) (q)

Lmpr,n,p = hmR nl(q)w (q) 1@ p +UMR,n,p
a=1 () _ z<q>:1

Tonpmp = |X|mp.np : received signal

P =[H®)] i) ¢ -th MIMO channe

meg, mT mer,

ibqg(q) = [S( )]n [(¢) - transmitted symbols (during the n-th time-slot)
(q) _ q) . . . .
mﬁ_,‘?>,l<q>,p — [ ]p,(l(Q)—l)Mé‘”Jrl(q) . coding/multiplexing tensor
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Application 1: Multiantenna coding

x L' = L) ... 4+ L(Q) . total number of multiplexed signals

x« M/, = Mr}l) + -+ M,_(FQ) . total number of transmit antennas

* R = L(l)M,}1> 4o L(@M}Q) . number of columns of W

Constrained Block-PARAFAC model:
(HECMRXM%, SECNXL/, WECPXR/)

X=H¥oS®EYW!' +V, WW!=M1Ip

Constrained Block-PARAFAC model covers some multi-antenna
coding schemes as special cases:

« LD =M"P =1, Q>1:

Reduces to the multiantenna code of [Sidiropoulos&Budampati’'02]

«+ Q=1 L@ >1,M:§ﬂq> > 1:

Takes the form of the multiantenna code of [Hassibi’02]
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Constraint matrices: Physical interpretation

¥ and ® can be seen as symbol-to-antenna loading matrices

Reveal the joint spreading-multiplexing pattern considered at the
transmitter, for each transmission group;

By configuring the joint pattern of 1’s and 0’s of these matrices
— different multiantenna coding schemes can be constructed

Example:
M- = 3 transmit antennas, Q = 2 Tx groups.
Spreading-multiplexing structures: (M, L)) = (2,1) and (M{?, L(2)) = (1, 3).

00 0 0 1 1.0 0 0
T=|0 100 0]|ecCM*l &= 0 0 100 e
0011 000 1 0
. i 000 0 0 1

1) Rows of W reveal the spatial multiplexing factor
= nb. of symbols simultaneously loaded at the same transmit antenna
2) Rows of ® reveal the spatial spreading factor

= nb. of transmit antennas simultaneously transmitting the same symbol
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Constraint matrices: Physical interpretation

Joint spreading-multiplexing pattern: The matrix product ¥ &7
1 0

0 0
we'=|1 0 0 0 | eCMrxH
0 1 1 1

Reading $®1 column-wise (for a fixed row):
+ check for the nb. of data-streams multiplexed at a given antenna

Reading $®! row-wise (for a fixed column):
+ check for the nb. of antennas spreading a given data-stream

Remark: Symbol-to-antenna allocation obtained by permuting the columns of the
constraint matrices ¥ and ®. Important in spatially correlated channels
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Constrained Block-PARAFAC based multi-
antenna recelver

Scheme 1 Scheme 2 | Scheme 3
(M), L) (1,4) (1,2) (1,1)
(M2, L(2)) (2,1) (2,1) (2,1)

Rate (¢-th group) = (L(?) / P)log> (1) bits/channel use

0

10

o) —@—Gceheme 1, Group 1, (Rate=2) |
... i..........| —%—Scheme 1, Group 2, (Rate=0.5) | |
107 — B —Scheme 2, Group 1, (Rate=1.5) | |
RNy = v — Scheme 2, Group 2, (Rate=0.75}
TR - P Scheme 3, Group 1, (Rate=1) |1
---------- | O Scheme 3, Group 2, (Rate=1)
10 "¢ :

10_3 ............ ‘:‘../.' .................... ‘4,.'.4,.,_'::I::II:::‘:::II:II:II:II:::.

BER

.......................

107 5
‘ | ‘ ~ %
10 .'ﬁﬁﬂﬁﬁﬁfﬁZf]ZfﬁZﬁIZﬁﬂﬁﬁﬂfﬁZfﬁZ‘f’ﬁZf"ﬁﬂﬁﬁﬂfﬁﬁfﬁﬁfﬁﬁfﬁﬁﬁﬂﬁﬁﬂfﬁﬁfﬁﬁfﬁﬁfiﬁﬁ'ﬂ
10—6 i i i
5 10 15 20 25

SNR per bit (dB)
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Application 2: Blind Beamforming

/\ Ant. 1
Source 1 j I

Base station
[ ]

receiver
*

T Ant. M
Source Q

Three-way array dimensions:

I; = M : Nb. of receiver antennas
I = N : Nb. of symbols periods
I3 = P : Oversampling factor (nb. of samples/symbol period)

Model parameters:
(2. Nb. of source signals

Rg(J) — L(9: Nb. of multipaths (¢-th source); L' = LM ... + [(Q)

qu) = K. Temporal support of the convolutive channel (common for all sources)
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Application 2: Blind Beamforming

Decomposition of the received signal as a three-way array:

Q L(Q) K
(q) (Q) (q)
Lm,n,p — E , E : bl(q)a 1(a) Sn, k1) k. p T Um,n,p
q=1[1(a) =1 k=1

Tonp = |X]mnp: received signal

bl((qq)) = [Dia,g(B(Q))] 1) () : Multipath gains/amplitudes
ﬁf)uq) = &7(7%) (9l<q>) = [A(q)]m’l(q) array response (Vandermonde structure)

gl((qq)) kp =gk—-1+({p—-1)/P—7nw) = [G(q)]p,(l(q>_1)K+k pulse shape

(Q)

Sy = [S(@)],, & : transmitted symbols (Toeplitz structure)

Constrained Block-PARAFAC model:
(A c CMXL” S ¢ CNXQK’ H c CPXL’K)

X=(APoS®)H" +V, H=GBxI)

W = BlockDiag(I1; ) ® 1%} I ® 11;;)
P = BlOCkDi&g(lf(l) ® Iy de'AlrJe%@@t)a@%IC&P%%—June 05, 2006 — p.29



Special cases of constrained Block-PARAFAC

Special case 1: Far-field reflections
(av(gb?l ~ .. ey (9)

S a p(a) = 0m qzl,...,Q)

(D)

Tonmp = ZCL(q)th(,(Q ;q3€+vm’n’p, with h/(q) Z bl((czq))gl(g])) .
q=1 1(a) =1

Constrained Block-PARAFAC model:
(A/E(CMXQ, SE(CNXQK, H/ECPXQK)

X =(A'ToS)H' +V, U=Ip®1%, ®=Ipk
with A’ =[a)...a@] H =GBJ,,
J, = BlockDiag(1;0) @ Ix -+ 11 ®1Ik)

Remark: This model arises in [Sidiropoulos&Dimic’01] and [de Baynast&De

Lathauwer'03] under different formulations and terminologies

« In [Sidiropoulos&Dimic’01]: PARALIND model

+ In [de Baynast&De Lathauwer’03]: Generalized CP model
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Special cases of constrained Block-PARAFAC

Special case 2: Local scattering (small delay spread)
(maa:(qu) <<T,q=1,...,Q, K= 1)

Q (@)

(q) (Q)
Lm,n,p = E , E : bl(q)aml(q)g MO T Um,n,p
g=1[1(a) =1

Constrained Block-PARAFAC model:
(AECMXL/, SECNXQ, HNECPXL/)

X = (AeS®)H""+V, W =1I., @ = BlockDiag(1} -1} )
win G =[gf"-gl¥) g ] eC™", H' =GB,
J, = BlockDiag(1;0) @ I -+ 11 ®Ik)

Remark: This special case was considered in [Sidiropoulos&Liu’01].
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Constrained Block-PARAFAC based receiver

Goal:

1) Separate the () source contributions (ensure between-block uniqueness)
2) Recover each source signal (ensure within-block partial uniqueness)

ALS + Subspace+ FA algorithm:

lterative combination of Alternating Least Squares (ALS),
Subspace method, and Finite Alphabet (FA) projection:

x ALS + FA steps:

Separate the @ source signals;

* Subspace step:
Recover the transmitted sequences by fixing a rotational ambiguity matrix.

Same idea of [Sidiropoulos&Dimic’01] and [de Baynast&De Lathauwer'03],
but fitting a different three-way model.

Forcing the FA property on the symbol matrix accelerates
convergence (although not optimal)
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Constrained Block-PARAFAC based receiver

angles-of-arrival time-delays

Source 1 041,081y = (=50°, —20°) (P 2Dy = (0,7)

Source 2 | (6%%,6(%,087)) = (0°,30°,50°) | (+\V, 7", 7)) = (0,0.2T, T)

M=2 or 3, N=50, P=12

BER

.| | —©&—source 1, M=2 * N
107 £ —8— source 2, M=2 N
| —o— source 1, M3 N
L | —F— source 2’ M=3 [ R R
5.. — % — source 2’ M=3 (MMSE) .......... o PR ]
10 0 5 10 15 20 25

SNR (dB)
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Concluding remarks and perspectives

Constrained Block-PARAFAC decomposition: Based on De Lathauwer’s
block-tensor approach, but formulated using constraint matrices

Enjoys between-block uniqueness/resolution and different levels of within-block
partial uniqueness

Application of constrained Block-PARAFAC to two wireless communication
problems: multiantenna coding and blind beamforming

Constraint matrices are meaningful in wireless signal processing applications
(e.g. multiantenna coding)

Perspectives:

Within-block uniqueness from a constrained Block-Tucker3 point of view;

Applications aspects:

(i) Robustness to under- and over-parameterizations (blind beamforming);
(ii) Optimization of the constraint matrices (multiantenna coding)
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