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Motivations and preliminaries

Acknowledgement:

To Richard Harshman for his valuable comments, suggestions
and motivation on important issues of this work.

• PARAFAC: no interaction between modes, unique (without
orthogonality constraints);

• Tucker3: complete interaction between modes, nonunique
(rotational indeterminacy);

• Mixed PARAFAC-Tucker3 models [Bro’98]:
∗ Constrained interactions involving factors different modes

(not as complete as in Tucker3 models);
∗ Arise in some wireless signal processing problems:

- Multiantenna codings
- Blind beamforming
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Motivations and preliminaries

• Mixed PARAFAC-Tucker3 decompositions:

∗ Thinking “Tucker3-wise": constrained core tensor

∗ Thinking “PARAFAC-wise": constrained factor matrices

• Generalizing/combining PARAFAC and Tucker3 decompositions:

∗ Decomposition in a sum of smaller Tucker3 blocks:
[De Lathauwer’05]

∗ Decomposition in a sum of constrained PARAFAC blocks:
Special case of [De Lathauwer’05]
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Constrained Block-PARAFAC formulation

• The decomposition in scalar form (X ∈ C
I1×I2×I3 , Q blocks):
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Special case of [De Lathauwer’05];
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, q = 1, . . . , Q

• Factorization as a sum of constrained PARAFAC blocks
[de Almeida et al.’05]:
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Constrained Block-PARAFAC formulation

Interaction patterns

• Equivalences:

A(q)⊗1T
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• Constraint matrices:
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• The sets {Ψ(1), . . . ,Ψ(Q)} and {Φ(1), . . . ,Φ(Q)} reveal the
interaction patterns within the different blocks;
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Constrained Block-PARAFAC formulation

• Factorization using the constraint matrices

X··i3 =

Q
∑

q=1

A(q)Ψ(q)Di3(C
(q))(B(q)Φ(q))T .

• Block factor matrices:

A = [A(1), . . . ,A(Q)] ∈ C
I1×R1

B = [B(1), . . . ,B(Q)] ∈ C
I2×R2

C = [C(1), . . . ,C(Q)] ∈ C
I3×R3 ,

R1 =

Q
∑
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R
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R
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Q
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R
(q)
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(q)
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• Block constraint matrices:

Ψ = BlockDiag(Ψ(1) · · ·Ψ(Q)) (R1 ×R3)

Φ = BlockDiag(Φ(1) · · ·Φ(Q)) (R2 ×R3)
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Constrained Block-PARAFAC formulation

• Compact matrix-slice form:

X··i3 = AΨDi3(C)(BΦ)T .

• Unfolded matrices:

X1 = (C¦AΨ)(BΦ)T , X2 = (BΦ¦C)(AΨ)T , X3 = (AΨ¦BΦ)CT

Related to PARALIND models [Bro-Harsh-Sid’05]

• Expansion using tensor products of canonical vectors:
Goal : Justify the introduction of the constraint matrices [de Almeida et al.’06]
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Some terminology and concepts

What can be said about constrained Block-PARAFAC ?

• Factorization of a three-way array in a sum of Q constrained
PARAFAC blocks, everyone of them being a function of three
component matrices A(q),B(q) and C(q).

• Within the same PARAFAC block, it is permitted that columns of
different component matrices are linearly combined to generate
the three-way data.

• The interaction pattern is defined by the matrices Ψ(q) and Φ(q)

and may differ from block to block.
• No interaction takes place between blocks.
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Some terminology and concepts

“Between-block" versus “Within-block" uniqueness:
[Terms coined by Harshman]

• Uniqueness concepts interpreted in two ways:

∗ Between-block uniqueness: synonym of separability of the Q
blocks. Independent of the interaction structure.
∗ Within-block uniqueness: unique determination of the three
component matrices of the corresponding block (up to permutation
and scaling). Dependent of the particular interaction structure.

• Connection with “partial" uniqueness concepts:
∗ PARAFAC case [Harshman’72] [ten Berge’04] [Bro-Harsh-Sid’05]:
"When non-unique solutions occur ... uniqueness can partially or completely
“break down"..." [Harshman’72]

∗ Constrained Block-PARAFAC case:
Uniqueness can break down “in parts" (within a block)... but also “between blocks"!
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Constrained Block-PARAFAC linked to Block-
Tucker3

• Constrained Block-PARAFAC can be approached to Tucker3
analysis [Kiers&Smilde’98] [ten Berge&Smilde’02]:

Proposition: The constrained Block-PARAFAC decomposition is equivalent to
a “constrained Block-Tucker3" one, where the unfolded matrices of the every core
tensor block are column-wise orthogonal, i.e., the inner product of any two distinct
columns of every unfolded core matrix is equal to zero.

• The link relies on the concept of block Khatri-Rao product | ⊗ | :
A |⊗| B = [A(1)⊗B(1), · · · ,A(Q)⊗B(Q)].

X3 = (AΨ ¦BΦ)CT = (A |⊗| B)F (Ψ,Φ)CT .

F (Ψ,Φ) = BlockDiag(Ψ(1)¦Φ(1)
︸ ︷︷ ︸

I
R

(1)
3

· · ·Ψ(Q)¦Φ(Q)
︸ ︷︷ ︸

I
R

(Q)
3

)

⇒ X3 = (A |⊗| B)G3C
T , G3 = IR3

(Constrained Block-Tucker3 decomp.)
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Constrained Block-PARAFAC linked to Block-
Tucker3

• Unfolded matrices X1 and X2:

X1 = (C |⊗| A)G1B
T , X2 = (B |⊗| C)G2A

T ,

• Unfolded block-cores G1 and G2:
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2 column-wise orthogonal ?
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Constrained Block-PARAFAC linked to Block-
Tucker3

• We have:
G

(q)T
1 G

(q)
1 = Φ(q)Φ(q)T = R

(q)
1 IR(q)

2

G
(q)T
2 G
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1

• Column-wise orthogonality also for G1 and G2

Constraint matrices from a PARAFAC perspective give rise to
orthogonal tensor cores from a Tucker3 perspective
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Uniqueness issues

• Uniqueness proof of constrained Block-PARAFAC relies on
Harshman’s original proof of “minimum conditions" for PARAFAC
[Harshman’72].

• The proof sheds light on the between-block resolution/separability
for constrained Block-PARAFAC.

• Within-block uniqueness can be studied separately for each block,
possibly taking special (within-block) structures into account.

• Different levels of “partial" uniqueness are possible for constrained
Block-PARAFAC
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Uniqueness issues

Theorem: Assuming full rank A(q) ∈ C
I1×R
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between-block uniqueness is achieved and A = ATa, B = BTb and
C = CTc (up to permutation ambiguities).

Ta = BlockDiag(T(1)
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Uniqueness issues

• Rotational freedom confined within the blocks;
(due to block-diagonal structure of Ta, Tb and Tc)

• Within-block rotational freedom is constrained;
(not as complete as for Tucker3)

• Recovering of complete within-block uniqueness (q-th block):

∗ If C(q) is known ⇒ T(q)
a ⊗T

(q)
b = I;

∗ If rotational indeterminacy T(q)
c is fixed;

• Partial uniqueness arises if a subset of {T(1)
a , . . . ,T

(Q)
a } or

{T
(1)
b , . . . ,T

(Q)
b } is fixed.
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Uniqueness issues

Blocks with equal interaction patterns

R
(1)
1 = . . . = R

(Q)
1 = R1 and R

(1)
2 = . . . = R

(Q)
2 = R2

• Equivalent necessary condition:

min

(

b
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c, b
I1I3

R2

c, b
I2I3

R1

c

)

≥ Q.

• For R1 = R2 = 1 (standard PARAFAC) the above condition
reduces to the necessary uniqueness conditions of [Liu-Sid’01].
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Partial uniqueness in constrained Block-
PARAFAC

• Some blocks can be uniquely determined, while the remaining
ones are either nonunique or partially unique
⇒ (breaking down of uniqueness between blocks)

• For the remaining (no strictly unique) blocks:

Situation 1: Within-block nonuniqueness
All the corresponding component matrices affected by unknown
rotational indeterminacy;

Situation 2: Within-block partial uniqueness
Some component matrices (or a subset of their columns) uniquely
determined ⇒ (breaking down of uniqueness within a block)
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Partial uniqueness in constrained Block-
PARAFAC

Example 1:

Q = 3 blocks

{R
(1)
1 , R

(1)
2 } = {1, 1}, {a(1),b(1), c(1)}

{R
(2)
1 , R

(2)
2 } = {2, 2}, {A(2),B(2),C(2)}

{R
(3)
1 , R

(3)
2 } = {1, 2}, {a(3),B(3),C(3)}

Block-constraint matrices:

Ψ =








1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 1







, Φ =










1 0 0 0 0 0 0

0 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1










Block 1: unique / Block 2: nonunique / Block 3: partially unique

/ (T
(2)
a ⊗T

(2)
b )

−1
= T

(2)T
c / T

(3)T
b = T

(3)−1
c
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Partial uniqueness in constrained Block-
PARAFAC

Example 2:

Q = 3 blocks

{R
(1)
1 , R

(1)
2 } = {1, 2}, {a(1),B(1),C(1)}

{R
(2)
1 , R

(2)
2 } = {1, 2}, {a(2),B(2),C(2)}

{R
(3)
1 , R

(3)
2 } = {1, 2}, {a(3),B(3),C(3)}

Block-constraint matrices:

Ψ =






1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1




 , Φ =













1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1













⇒ Partial uniqueness in all the blocks
⇒ Complete uniqueness in the first-mode

This case coincides with the “FIA PARALIND model" [Bro-Harsh-Sid’05]
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Applications in Wireless Signal Processing

• Some previous works using PARAFAC modeling in wireless
communications:
(DS-CDMA, OFDM, blind beamforming, multiantenna (MIMO) systems,...)

[Sidiropoulos et al.’00-1] [Sidiropoulos et al.’00-2] [Sidiropoulos&Dimic’01],
[Sidiropoulos&Liu’01] [Sidiropoulos&Budampati’02] [Jiang&Sidiropoulos’03]
[de Baynast&De Lathauwer’03] [de Baynast et al.’03] [De Lathauwer’05]

• Two classes of wireless communication problems formulated
using constrained Block-PARAFAC modeling:

∗ Multiantenna coding
(with spatial spreading and single-antenna multiplexing)

∗ Blind beamforming
(under specular propagation and large delay spread)

• Constrained Block-PARAFAC structure arises in some of previous
works while generalizing some previously proposed three-way
models
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Application 1: Multiantenna coding
Space-Time Multiplexing Coding (STMC)
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Output 1

Output Q
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Output 2
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����
�� ����

������

Three-way array dimensions:
I1 = MR : Nb. of receive antennas
I2 = N : Nb. of time-slots
I3 = P : Nb. of coded symbols per time-slot (code length)

Model parameters:
Q: Nb. of transmission groups (or users to be served)

R
(q)
1 = L(q): Nb. spatially-multiplexed signals

R
(q)
2 = M

(q)
T : Nb. of spreading transmit antennas
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Application 1: Multiantenna coding
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• Decomposition of the received signal as a three-way array:

xmR,n,p =

Q
∑

q=1

M
(q)
T∑

m
(q)
T

=1

h
(q)

mR,m
(q)
T

L(q)
∑

l(q)=1

s
(q)

n,l(q)w
(q)

m
(q)
T

,l(q),p
+ vmR,n,p

xmR,n,p = [X ]mR,n,p : received signal

h
(q)

mR,m
(q)
T

= [H(q)]
mR,m

(q)
T

: q-th MIMO channel

s
(q)

n,l(q) = [S(q)]n,l(q) : transmitted symbols (during the n-th time-slot)

w
(q)

m
(q)
T

,l(q),p
= [W(q)]

p,(l(q)−1)M
(q)
T

+l(q) : coding/multiplexing tensor
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Application 1: Multiantenna coding

∗ L′ = L(1) + · · ·+ L(Q) : total number of multiplexed signals

∗M ′

T
= M

(1)
T

+ · · ·+ M
(Q)
T

: total number of transmit antennas

∗ R′ = L(1)M
(1)
T

+ · · ·+ L(Q)M
(Q)
T

: number of columns ofW

• Constrained Block-PARAFAC model:
(H ∈ C

MR×M′

T , S ∈ CN×L′

, W ∈ CP×R′ )

X = (HΨ ¦ SΦ)WT +V, WWH = M ′

T IP

• Constrained Block-PARAFAC model covers some multi-antenna
coding schemes as special cases:

∗ L(q) = M
(q)
T = 1, Q > 1 :

Reduces to the multiantenna code of [Sidiropoulos&Budampati’02]

∗ Q = 1, L(q) > 1,M
(q)
T > 1 :

Takes the form of the multiantenna code of [Hassibi’02]
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Constraint matrices: Physical interpretation

• Ψ and Φ can be seen as symbol-to-antenna loading matrices
• Reveal the joint spreading-multiplexing pattern considered at the

transmitter, for each transmission group;
• By configuring the joint pattern of 1’s and 0’s of these matrices
→ different multiantenna coding schemes can be constructed

Example:
M

′

T = 3 transmit antennas, Q = 2 Tx groups.

Spreading-multiplexing structures: (M
(1)
T

, L(1)) = (2, 1) and (M
(2)
T

, L(2)) = (1, 3).

Ψ =






1 0 0 0 0

0 1 0 0 0

0 0 1 1 1




 ∈ C

M ′

T×R′

, Φ =








1 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1







∈ C

L′
×R′

1) Rows ofΨ reveal the spatial multiplexing factor
⇒ nb. of symbols simultaneously loaded at the same transmit antenna

2) Rows of Φ reveal the spatial spreading factor
⇒ nb. of transmit antennas simultaneously transmitting the same symbol
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Constraint matrices: Physical interpretation

Joint spreading-multiplexing pattern: The matrix product ΨΦT

ΨΦT =






1 0 0 0

1 0 0 0

0 1 1 1




 ∈ C

M ′

T×L′

• Reading ΨΦT column-wise (for a fixed row):
∗ check for the nb. of data-streams multiplexed at a given antenna

• Reading ΨΦT row-wise (for a fixed column):
∗ check for the nb. of antennas spreading a given data-stream

Remark: Symbol-to-antenna allocation obtained by permuting the columns of the
constraint matricesΨ and Φ. Important in spatially correlated channels
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Constrained Block-PARAFAC based multi-
antenna receiver

Scheme 1 Scheme 2 Scheme 3

(M(1), L(1)) (1,4) (1,2) (1,1)

(M(2), L(2)) (2,1) (2,1) (2,1)

Rate (q-th group) = (L(q)/P )log2(µ) bits/channel use

5 10 15 20 25
10−6

10−5

10−4

10−3

10−2

10−1

100

SNR per bit (dB)

B
E

R

Scheme 1, Group 1, (Rate=2)
Scheme 1, Group 2, (Rate=0.5)
Scheme 2, Group 1, (Rate=1.5)
Scheme 2, Group 2, (Rate=0.75)
Scheme 3, Group 1, (Rate=1)
Scheme 3, Group 2, (Rate=1)
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Application 2: Blind Beamforming

xzy{| { }y } ~����| �| ~��| �

� �� � �| �
� �� � �| �

Ant. 1

Ant. M

Three-way array dimensions:
I1 = M : Nb. of receiver antennas
I2 = N : Nb. of symbols periods
I3 = P : Oversampling factor (nb. of samples/symbol period)

Model parameters:
Q: Nb. of source signals

R
(q)
1 = L(q): Nb. of multipaths (q-th source); L′ = L(1) + · · ·+ L(Q)

R
(q)
2 = K: Temporal support of the convolutive channel (common for all sources)
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Application 2: Blind Beamforming

• Decomposition of the received signal as a three-way array:

xm,n,p =

Q
∑

q=1

L(q)
∑

l(q)=1

b
(q)

l(q)a
(q)

m,l(q)

K∑

k=1

s
(q)
n,kg

(q)

l(q),k,p
+ vm,n,p

xm,n,p = [X ]m,n,p : received signal

b
(q)

l(q) = [Diag(B(q))]l(q),l(q) : multipath gains/amplitudes

a
(q)

m,l(q) = a
(q)
m (θl(q)) = [A(q)]m,l(q) array response (Vandermonde structure)

g
(q)

l(q),k,p
= g(k − 1 + (p− 1)/P − τl(q)) = [G(q)]p,(l(q)−1)K+k pulse shape

s
(q)
n,k = [S(q)]n,k : transmitted symbols (Toeplitz structure)

• Constrained Block-PARAFAC model:
(A ∈ CM×L′

, S ∈ CN×QK , H ∈ CP×L′K)

X = (AΨ ¦ SΦ)HT +V, H = G(B⊗ IK)

Ψ = BlockDiag(IL(1) ⊗ 1T
K · · · IL(Q) ⊗ 1T

K)

Φ = BlockDiag(1T
L(1) ⊗ IK · · ·1

T
L(Q) ⊗ IK)A. de Almeida et al. / TRICAP2006 – June 05, 2006 – p.29



Special cases of constrained Block-PARAFAC

Special case 1: Far-field reflections

(a(q)
m,1 ≈ · · · ≈ a

(q)

m,L(q) = a
(q)
m , q = 1, . . . , Q)

xm,n,p =

Q
∑

q=1

a(q)
m

K∑

k=1

h
′(q)
p,k s

(q)
n,k + vm,n,p, with h

′(q)
p,k =

L(q)
∑

l(q)=1

b
(q)

l(q)g
(q)

l(q),k,p

• Constrained Block-PARAFAC model:
(A′

∈ CM×Q, S ∈ CN×QK , H′
∈ CP×QK)

X = (A′Ψ ¦ S)H′T +V, Ψ = IQ ⊗ 1
T
K , Φ = IQK

with A′ = [a(1) · · ·a(Q)], H′ = GBJg,

Jg = BlockDiag(1L(1) ⊗ IK · · ·1L(Q) ⊗ IK)

Remark: This model arises in [Sidiropoulos&Dimic’01] and [de Baynast&De
Lathauwer’03] under different formulations and terminologies

∗ In [Sidiropoulos&Dimic’01]: PARALIND model

∗ In [de Baynast&De Lathauwer’03]: Generalized CP model
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Special cases of constrained Block-PARAFAC

Special case 2: Local scattering (small delay spread)
(max(τlq) << T , q = 1, . . . , Q, K = 1)

xm,n,p =

Q
∑

q=1

L(q)
∑

l(q)=1

b
(q)

l(q)a
(q)

m,l(q)g
(q)

p,l(q)s
(q)
n + vm,n,p

• Constrained Block-PARAFAC model:
(A ∈ CM×L′

, S ∈ CN×Q, H′′
∈ CP×L′ )

X = (A¦SΦ)H′′T +V, Ψ = IL′ , Φ = BlockDiag(1T
L(1) · · ·1

T
L(Q))

with G = [g
(1)
1 · · ·g

(q)

l(q) · · ·g
(Q)

L(Q) ] ∈ C
P×L′

, H′′ = GB,

Jg = BlockDiag(1L(1) ⊗ IK · · ·1L(Q) ⊗ IK)

Remark: This special case was considered in [Sidiropoulos&Liu’01].
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Constrained Block-PARAFAC based receiver

Goal:

1) Separate the Q source contributions (ensure between-block uniqueness)

2) Recover each source signal (ensure within-block partial uniqueness)

ALS + Subspace+ FA algorithm:
• Iterative combination of Alternating Least Squares (ALS),

Subspace method, and Finite Alphabet (FA) projection:
∗ ALS + FA steps:

Separate the Q source signals;

∗ Subspace step:
Recover the transmitted sequences by fixing a rotational ambiguity matrix.

• Same idea of [Sidiropoulos&Dimic’01] and [de Baynast&De Lathauwer’03],
but fitting a different three-way model.

• Forcing the FA property on the symbol matrix accelerates
convergence (although not optimal)
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Constrained Block-PARAFAC based receiver

angles-of-arrival time-delays

Source 1 (θ
(1)
1 , θ

(1)
2 ) = (−50◦,−20◦) (τ

(1)
1 , τ

(1)
2 ) = (0, T )

Source 2 (θ
(2)
1 , θ

(2)
2 , θ

(2)
3 ) = (0◦, 30◦, 50◦) (τ

(1)
1 , τ

(1)
2 , τ

(1)
3 ) = (0, 0.2T, T )

0 5 10 15 20 25
10−5

10−4

10−3

10−2

10−1

100

SNR (dB)

B
E

R

M=2 or 3, N=50, P=12

source 1, M=2
source 2, M=2
source 1, M=3
source 2, M=3
source 2, M=3 (MMSE)

source 1: L(1)=2
source 2: L(2)=3
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Concluding remarks and perspectives

• Constrained Block-PARAFAC decomposition: Based on De Lathauwer’s
block-tensor approach, but formulated using constraint matrices

• Enjoys between-block uniqueness/resolution and different levels of within-block
partial uniqueness

• Application of constrained Block-PARAFAC to two wireless communication
problems: multiantenna coding and blind beamforming

• Constraint matrices are meaningful in wireless signal processing applications
(e.g. multiantenna coding)

Perspectives:

• Within-block uniqueness from a constrained Block-Tucker3 point of view;

• Applications aspects:

(i) Robustness to under- and over-parameterizations (blind beamforming);
(ii) Optimization of the constraint matrices (multiantenna coding)
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