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Outline

• Column and Orthogonal Complement (OC) Spaces 
• Uniqueness questions and OC Spaces
• Results from OC Spaces
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Uniqueness
• X is a 3-way array of order IxJxK
• PARAFAC decomposes the slices of the array as 

Xk=ACkBt + Ek
◦ AIxR; BJxR; CKxR

• Suppose there exists another decomposition 
Xk=GDkHt + Ek
◦ GIxR; HJxR; DKxR

• The decomposition is unique if every alternative 
satisfies: G=AΠΛ1; H=BΠΛ2; D=CΠΛ3
◦ Π is a permutation matrix and Λi is diagonal and Λ1Λ2Λ3=IR
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KR Products
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Summary
• The decomposition is considered without error 

X = (AoB)Ct

• KR products are full column rank (Liu and Sidiropoulos, 2001)

• The KR product is a basis for the column space
• Is the KR product (AoB) the only KR product that 

generates the columns of X ?
• The alternative is assumed to be X = (GoH)Dt

• The component matrices are investigated in reduced 
form (characterizing the k-rank and rank)

ten Berge, J.M. and Sidiropoulos, N.D. 2002. On 
uniqueness in CANDECOMP/PARAFAC. 
Psychometrika 67: 399-409.
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Column Spaces

• The KR product representation of the PARAFAC 
suggests that the columns of X are linear 
combinations of the columns of the KR product

• So...the columns of X are generated from the 
columns of the KR product (AoB)

ten Berge, J.M. and Sidiropoulos, N.D. 2002. On 
uniqueness in CANDECOMP/PARAFAC. 
Psychometrika 67: 399-409.
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Investigating Column Spaces

• Replacement
◦ Used when the elements can be switched without changing 

the column space
• Transformation

◦ Used when one of the loading matrices has full-column rank

• Finding a non-trivial alternative basis for the column 
space implies a non-unique decomposition
◦ Once one is found, all decompositions with that KR product 

can also be considered non-unique

ten Berge, J.M. and Sidiropoulos, N.D. 2002. On 
uniqueness in CANDECOMP/PARAFAC. 
Psychometrika 67: 399-409.
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Reduced Forms

Instead of considering loading matrices of the form

loading matrices in reduced form were considered 
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ten Berge, J.M. and Sidiropoulos, N.D. 2002. On 
uniqueness in CANDECOMP/PARAFAC. 
Psychometrika 67: 399-409.
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Key Elements Learned

• The KR product allows us to talk about 
decompositions in column space language

• The properties of symmetry that applied for the 
“slab” notation also apply

• Matrices and the resulting KR products can be 
considered in “reduced form”.

• More to uniqueness than k-rank?

ten Berge, J.M. and Sidiropoulos, N.D. 2002. On 
uniqueness in CANDECOMP/PARAFAC. 
Psychometrika 67: 399-409.
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When k-rank didn’t give the full story

• R = 4
• M1 : rank = 3 and k-rank = 2
• M2 : rank = 3 and k-rank = 2
• M3 : full column rank (rank = k-rank = 4)

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

z

x
0

1
0
0

0
1
0

0
0
1

ten Berge, J.M. and Sidiropoulos, N.D. 2002. On 
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Psychometrika 67: 399-409.
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When k-rank didn’t give the full story

ten Berge, J.M. and Sidiropoulos, N.D. 2002. On 
uniqueness in CANDECOMP/PARAFAC. 
Psychometrika 67: 399-409.
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Orthogonal Complement Spaces (OCS)

What’s different about an OCS approach?



University of Kentucky

Column Spaces and Orthogonal Complement 
Spaces

Column Space Approach

Orthogonal Complement Space Approach
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Finding OC Constraints: The Steps

1. Suppose you have AoB
2. Assume that an alternative AoB exists, represented by 

GoH
3. Find basis vectors for the null space of (AoB)t

4. Take the inner product of the columns of the GoH and 
the null space basis vectors

5. Set equal to 0 (orthogonal) and solve

The constraints that result will determine if non-trivial 
alternatives are possible
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OCSA: Finding Constraints 

M1
oM2
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OCSA: Finding Constraints 
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OCSA: Finding Constraints 
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OCSA: Finding Constraints 
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OCSA: OC Constraints

Non-Separable Constraints

Non-trivial transformations

Separable Constraints

Trivial transformations
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OCSA: Utilizing Symmetry

• If an alternative KR product can be found that is non-
trivial transformation, then all PARAFAC 
decompositions with that KR product are non-unique

• A PARAFAC decomposition is unique if every 
alternative KR product can only be a trivial 
transformation.
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OCSA: When R = 4

k-rank (M1) k-rank (M2) rank(M1) rank(M2) P/S Only?

2 2 2 2 No

2 2 2 3 No

2 2 3 3 Yes/No

2 3 2 3 No

2 3 3 3 Yes

2 4 2 4 Yes

2 4 3 4 Yes

3 3 3 3 Yes*

3 4 3 4 Yes
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k-rank (M1) rank(M1) k-rank (M2) rank(M2) k-rank (M3) rank(M3) Uniqueness?

2 2 2 2 2 2 No
2 2 4 4 2 2 No
2 3 4 4 2 2 No
3 3 3 3 2 2 No
3 3 4 4 2 2 No
2 2 2 3 2 2 No

2 2 3 3 4 4 No

3 3 3 3 3 3 Yes*

2 3 2 3 2 2 No
2 3 3 3 2 2 No

2 2 3 3 2 2 No

2 3 2 3 2 3 No/Yes
2 3 3 3 2 3 No/Yes
2 3 4 4 2 3 No/Yes
3 3 3 3 2 3 Yes

3 3 4 4 2 3 Yes



University of Kentucky

OCSA: Conclusions for R = 4

• Necessary and Sufficient Conditions for uniqueness 
(when k-rank=rank)
◦ A PARAFAC decomposition is unique if and only if  r(Mi) + r(Mj) ≥

R + 2, for all i≠j

• Conditions for uniqueness
◦ If two of the matrices have k-rank < rank, you will need to look at 

the number of OC constraints
◦ Otherwise, A PARAFAC decomposition is unique if and only if  

r(Mi) + r(Mj) ≥ R + 2, for all i≠j
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OCSA: Conclusions
• The OCSA provided a method for determining if 

alternative KR products could have non-trivial 
transformations

• The OC constraints offered an explanation of 
uniqueness when k-rank couldn’t.

• Based on the OC constraints, it was possible to 
determine if PARAFAC decompositions were unique

• Being able to “look” at decomposition uniqueness 
provided necessary and sufficient conditions for 
uniqueness for R = 4, 5, and 6 (k-rank = rank)
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Discussion
• The tools we have…

◦ KR products allow the use of linear algebra
◦ Simplification allows for a better “view” of the decomposition
◦ The OCSA provides a straightforward approach for determining if 

decompositions are unique for any R
• We need…

◦ A better “tool” for determining which alternatives are truly 
alternatives

◦ With more information on the decompositions that are unique, it will 
be possible to provide further empirical evidence for what causes 
uniqueness

• It looks like the key to defining necessary and sufficient 
conditions could rest with orthogonal complement spaces
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Extra Slides
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OC Spaces and Column Spaces

• Column Space of : C(AoB)
• Null Space of (AoB)t: N((AoB)t)
• C(AoB) = [N((AoB)t)]⊥

• All vectors orthogonal to [N((AoB)t)] are elements of 
C(AoB) 

• So...we need to find an alternative KR product that 
has columns that are orthogonal to [N((AoB)t)]
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Sample MAPLE Code
with(LinearAlgebra):

A:=Matrix(3,4,[[1,0,0,a[1]],[0,1,0,0],[0,0,1,a[3]]]);
B:=Matrix(3,4,[[1,0,0,b[1]],[0,1,0,0],[0,0,1,b[3]]]);

AB:=Matrix(9,4,[convert((OuterProductMatrix(B[1..3,1],A[1..3,1])),Vector),convert((OuterProductMatrix(B[1..3,2],A[1..3,
2])),Vector),convert((OuterProductMatrix(B[1..3,3],A[1..3,3])),Vector),convert((OuterProductMatrix(B[1..3,4],A[1..3,
4])),Vector)]);

G:=Matrix(3,4,[[1,0,0,g[1]],[0,1,0,g[2]],[0,0,1,g[3]]]);
H:=Matrix(3,4,[[1,0,0,h[1]],[0,1,0,h[2]],[0,0,1,h[3]]]);

GH:=Matrix(9,4,[convert((OuterProductMatrix(H[1..3,1],G[1..3,1])),Vector),convert((OuterProductMatrix(H[1..3,2],G[1..3,
2])),Vector),convert((OuterProductMatrix(H[1..3,3],G[1..3,3])),Vector),convert((OuterProductMatrix(H[1..3,4],G[1..3,
4])),Vector)]);

NAB:=NullSpace(Transpose(AB));

eqns:={Multiply(Transpose(NAB[1]),GH[1..9,4])=0,Multiply(Transpose(NAB[2]),GH[1..9,4])=0,Multiply(Transpose(NAB[
3]),GH[1..9,4])=0,Multiply(Transpose(NAB[4]),GH[1..9,4])=0,Multiply(Transpose(NAB[5]),GH[1..9,4])=0,a[1]<>0,a[2]
<>0,a[3]<>0,b[1]<>0,b[2]<>0,b[3]<>0};

solve(eqns);
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OCSA: When R = 5 (k-rank = rank)

k-rank (M1) k-rank (M2) rank(M1) rank(M2) P/S Only?

2 2 2 2 No

2 3 2 3 No

2 4 2 4 No

2 5 2 5 Yes

3 3 3 3 No

3 4 3 4 Yes

3 5 3 5 Yes

4 4 4 4 Yes

4 5 4 5 Yes
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k-rank (M1) rank(M1) k-rank (M2) rank(M2) k-rank (M3) rank(M3) Uniqueness?

2 2 2 2 2 2 No

2 2 3 3 2 2 No

2 2 4 4 2 2 No

2 2 5 5 2 2 No

3 3 3 3 2 2 No

3 3 4 4 2 2 No

3 3 5 5 2 2 No

4 4 4 4 2 2 No

4 4 5 5 2 2 No

2 2 5 5 3 3 No

3 3 3 3 3 3 No

3 3 4 4 3 3 No

3 3 5 5 3 3 No

4 4 4 4 3 3 Yes
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OCSA: When R = 6 (k-rank = rank)

k-rank (M1) k-rank (M2) rank(M1) rank(M2) P/S Only?

2 2 2 2 No

2 3 2 3 No

2 4 2 4 No

2 5 2 5 No

2 6 2 6 Yes

3 3 3 3 No

3 4 3 4 No

3 5 3 5 Yes

3 6 3 6 Yes

4 4 4 4 Yes

4 5 4 5 Yes

4 6 4 6 Yes

5 5 5 5 Yes

5 6 5 6 Yes
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k-rank (M1) rank(M1) k-rank (M2) rank(M2) k-rank (M3) rank(M3) Uniqueness?

2 2 2 2 2 2 N

2 2 3 3 2 2 N

2 2 4 4 2 2 N

2 2 5 5 2 2 N

2 2 6 6 2 2 N

3 3 3 3 2 2 N

3 3 4 4 2 2 N

3 3 5 5 2 2 N

3 3 6 6 2 2 N

4 4 4 4 2 2 N

4 4 5 5 2 2 N

4 4 6 6 2 2 N

5 5 5 5 2 2 N

5 5 6 6 2 2 N

3 3 3 3 3 3 N

3 3 4 4 3 3 N

3 3 5 5 3 3 N

3 3 6 6 3 3 N

4 4 4 4 3 3 N

4 4 5 5 3 3 N

4 4 6 6 3 3 N

5 5 5 5 3 3 Y

4 4 4 4 4 4 Y

4 4 5 5 4 4 Y
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Kruskal and Pairwise Combinations

• kA+kB+kC ≥ 2R + 2
• kC ≤ R

kA+kB ≥ 2R + 2 – kC

≥ 2R + 2 – R
= R + 2

rA+rB ≥ 2R + 2
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