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Candecomp/Parafac (CP) 
 
 

•     X is a real-valued I ×J ×K  array with slices Xk 
 

•     The CP model of X with R  factors is 
   

Xk = A  Ck  BT + Ek   k = 1, �, K 
 
•  Component matrices A (I ×R ), B (J ×R ) and  

   C (K ×R ) with diagonals of Ck  as rows 
 

•     CP is also written as 
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Uniqueness in CP 
 

•    Uniqueness is studied for a fixed residual array 
!"  fixed fitted model array    

 
•  A CP solution can only be unique up to 

rescaling/counterscaling and jointly permuting 
columns of A, B and C  (essential uniqueness ) 

 
•    Kruskal�s condition (1977) for essential 

uniqueness: 
        2R + 2 ≤ kA + kB + kC  
 

•    k-rank of A = max number k  such that every  
    set of k  columns of A is linearly independent 
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Kruskal�s Uniqueness Theorem 
 
 
Let (A,B,C) and (D,E,F) be two full CP decompositions 
of array X , both with R  components. If   
 

2R + 2 ≤ kA + kB + kC ,      (K) 
 
then there exists a unique permutation matrix Π and 
unique diagional matrices  Λa, Λb, Λc  such that  
 

D = A Π Λa  E = B Π Λb   F = C Π Λc  
 

and   Λa Λb Λc = IR 
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Kruskal�s Permutation Lemma 
 
 
Let C and F be K ×R  matrices and let kC ≥ 2.  
 
Suppose the following condition holds: 
 
If a vector y is orthogonal to h ≥ rank(F) � 1 columns 
of F, then y is orthogonal to at least h  columns of C. 
 
Then there exists a unique permutation matrix Π and a 
unique diagional matrix Λ such that 
 
       F = C Π Λ 
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Proof of Kruskal�s Uniqueness Theorem 
 
 
Two CP solutions (A,B,C) and (D,E,F), and (K) holds. 
 
Step 1 (K)  "  kA ≥ 2   kB ≥ 2    kC ≥ 2 

(K) "  (A ๏ B) and  (C ๏ A)  and  (B ๏ C)  
have full column rank 

 
Step 2 (K)  "  condition of Permutation Lemma for 
       (A,D) and (B,E) and (C,F) 
 
"   D = A Πa Λa  E = B Πb Λb  F = C Πc Λc  
 
Step 3 Πa = Πb = Πc   and   Λa Λb Λc = IR 
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Step 1 2R + 2 ≤ kA + kB + kC  

 
kC ≤ R   and  kB ≤ R     "   kA ≥ 2 

 
 
rank(A ๏ B)  ≥  k(A ๏ B)  ≥  min(kA + kB � 1, R )  = R 
 
Sidiropoulos & Bro (2000), Ten Berge (2000) 
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Suppose  kA = 1   and   a1 = 2 a2 
 

 a1 ๐ b1 ๐ c1 + a2 ๐ b2 ๐ c2  =   

  2 a2 ๐ b1 ๐ c1 + a2 ๐ b2 ๐ c2  =  

a2 ๐ 2 b1 ๐ (c1 � c2) + a2 ๐ (2 b1 + b2) ๐ c2  

 
"  kA ≥ 2   kB ≥ 2    kC ≥ 2  is necessary  

for uniqueness 
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Suppose  rank(A ๏ B) < R    and   (A ๏ B) n = 0 
 
X(JI × K)  =  (A ๏ B) CT  =  (A ๏ B) (C + znT)T 

for any vector z 

 
z can be chosen such that a column of  C + znT  

becomes 0   "   X  satisfies CP with R � 1 factors 

 
 
"  rank(A ๏ B) = rank(C ๏ A) = rank(B ๏ C) = R   

is necessary for uniqueness 
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Step 2 C and F are K ×R  matrices and kC ≥ 2 
 
q(C) = the number of columns of C not orthogonal to y  
q(F) = the number of columns of F not orthogonal to y  
 
To show: q(F) ≤ R � rank(F) + 1  "  q(C) ≤ q(F) 
 
Proof  (Sidiropoulos & Bro, 2000) 
 
Construct upper bound and lower bound for q(F) 
 

 X(JI × K) y = (A ๏ B) CTy = (D ๏ E) FTy 
 
(A ๏ B)  has full column rank  
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Hence   q(F) = 0  "  q(C) = 0   
 
span ⊥ (F)       span ⊥ (C)   "   span(C)       span(F) 
 

"  rank(C) ≤ rank(F) 
 
 

q(F)  ≤  R � rank(F) + 1    

≤  R � rank(C) + 1    

≤  R � kC + 1     

≤  kA + kB � (R+1)    

 
 

⊆⊆
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    = A diag(CTy) BT = D diag(FTy) ET 
 
 
 

q(F)  =  rank(diag(FTy))  

≥  rank(D diag(FTy) ET) 

=  rank(A diag(CTy) BT) 

=  rank(A* diag(t) B*T) 

≥  rank(A*) + rank(B* diag(t)) � q(C) 

=  rank(A*) + rank(B*) � q(C) 

 

∑
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rank(A*)  ≥  min(q(C), kA) 

rank(B*)  ≥  min(q(C), kB) 

 

 

 
 
(1) and (2)  "  min(q(C), kA) = min(q(C), kB) = q(C) 
 

   (2)  "  q(C) ≤ q(F) 

q(F)  ≥  min(q(C), kA) + min(q(C), kB) � q(C) (2) 

kA + kB � (R+1)  ≥ q(F)         (1) 
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Step 3 D = A Πa Λa    E = B Πb Λb     F = C Πc Λc 
 
to show:  Πa = Πb = Πc   and   Λa Λb Λc = IR 
 
If  Πa = Πb  then we are done.  
 
Proof  (Stegeman & Sidiropoulos, 2005) 
 

X(JI × K)  =   (A ๏ B) CT  
=   (A Π Λa ๏ B Π Λb) (C Πc Λc)T 
=   (A ๏ B) (C Πc Λa Λb Λc ΠT)T 

 
(A ๏ B) full column rank   "   C = C Πc Λa Λb Λc ΠT 
 
kC ≥ 2   "   Πc = Π   and   Λa Λb Λc = IR 
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To show:  if (K) holds and 
 

D = A Πa Λa    E = B Πb Λb     F = C Πc Λc , 
 
then  Πa = Πb     
 
Proof  Stegeman & Sidiropoulos (2005) 
   Kruskal (1977) 
 
 

 

This completes the proof of

Kruskal�s Uniqueness Theorem !! 
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Proof of Kruskal�s Permutation Lemma 
 
 
C and F are K ×R  matrices and kC ≥ 2 
 
For any vector y  
 

q(F) ≤ R � rank(F) + 1  "  q(C) ≤ q(F) 
 
q(C) = the number of columns of C not orthogonal to y  
q(F) = the number of columns of F not orthogonal to y  
 
 
To show:    F = C Π Λ 
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Proof  q(F) = 0  "  q(C) = 0   
 
"  span(C)       span(F) 
 
"  rank(F)  ≥  rank(C)  ≥  kC  ≥  2 
 
Partition the columns of F into the sets 
 
G0   =  { the all-zero columns of F } 
 
Gm   =  { a column f of F and all nonzero columns  

of F which are proportional to f } 
 
             m = 1, �, M 
 

⊆
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Definition a subset  Hk  of columns of  F  is called a 
k-dimensional column set if   

(i)  rank(Hk) = k   
(ii)  Hk  contains all columns of  F  in span(Hk) 

 
 
H0 = G0    H1 = G0 ∪ Gm    Hrank(F) = F 
 
 
y ⊥  f  and  g     "     y ⊥  span(f, g) = span(H2) 
rank(f, g) = 2 
 
together with span(C)       span(F), this yields the 
following result 
 

⊆
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Lemma  Under conditions of Permutation Lemma 
 
# columns C in span(Hk)  ≥  # columns F in span(Hk) 
 
k = 0, 1, �, rank(F). 
 
Proof  Stegeman & Sidiropoulos (2005) 
   Kruskal (1977) 
 
k = 0 :  kC ≥ 2  "   H0 = G0  is empty 
k = 1 :  
 
# columns C in span(Gm)  ≥   # columns F in span(Gm) 

 
m = 1, �, M 
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kC ≥ 2  "   # columns C in span(Gm)  ≤  1 
 

1  ≥  # columns C in span(Gm)  ≥    
# columns F in span(Gm)  ≥  1 

 
hence:  # columns C in span(Gm)  =  1 
    # columns F in span(Gm)  =  1 
 
"    every column of F has  

a proportional column in C 
 
"  F = C Π Λ 
 

permutation matrix Π and diagonal matrix Λ  
are unique 
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proof above:  Stegeman & Sidiropoulos (2005) 
      Kruskal (1977) 
 
alternative proof:  Jiang & Sidiropoulos (2004) 
 
 

This completes the proof of

Kruskal�s Permutation Lemma !! 
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