Kruskal's uniqueness condition for Candecomp/Parafac

Alwin Stegeman University of Groningen The Netherlands Nikos Sidiropoulos Technical University of Crete Greece

Candecomp/Parafac (CP)

- $\underline{\mathbf{X}}$ is a real-valued $I \times J \times K$ array with slices \mathbf{X}_k
- The CP model of \mathbf{X} with R factors is

$$X_k = A C_k B^T + E_k k = 1, ..., K$$

- Component matrices A (I×R), B (J×R) and
 C (K×R) with diagonals of C_k as rows
- CP is also written as $\underline{\mathbf{X}} = \sum_{r=1}^{R} \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r + \underline{\mathbf{E}}$

Uniqueness in CP

- Uniqueness is studied for a fixed residual array
 ←→ fixed fitted model array
- A CP solution can only be unique up to rescaling/counterscaling and jointly permuting columns of A, B and C (*essential uniqueness*)
- Kruskal's condition (1977) for essential uniqueness:

 $2R + 2 \le k_{\mathbf{A}} + k_{\mathbf{B}} + k_{\mathbf{C}}$

 k-rank of A = max number k such that every set of k columns of A is linearly independent Let (A,B,C) and (D,E,F) be two full CP decompositions of array \underline{X} , both with R components. If

$$2R + 2 \le k_{\rm A} + k_{\rm B} + k_{\rm C}$$
, (K)

then there exists a unique permutation matrix Π and unique diagional matrices Λ_a , Λ_b , Λ_c such that

$$\mathbf{D} = \mathbf{A} \, \mathbf{\Pi} \, \mathbf{\Lambda}_{a} \qquad \mathbf{E} = \mathbf{B} \, \mathbf{\Pi} \, \mathbf{\Lambda}_{b} \qquad \mathbf{F} = \mathbf{C} \, \mathbf{\Pi} \, \mathbf{\Lambda}_{c}$$

and
$$\mathbf{\Lambda}_{a} \, \mathbf{\Lambda}_{b} \, \mathbf{\Lambda}_{c} = \mathbf{I}_{R}$$

Kruskal's Permutation Lemma

Let **C** and **F** be $K \times R$ matrices and let $k_{\mathbf{C}} \ge 2$.

Suppose the following condition holds:

If a vector **y** is orthogonal to $h \ge \operatorname{rank}(\mathbf{F}) - 1$ columns of **F**, then **y** is orthogonal to at least *h* columns of **C**.

Then there exists a unique permutation matrix Π and a unique diagional matrix Λ such that

$\mathbf{F} = \mathbf{C} \mathbf{\Pi} \mathbf{\Lambda}$

Proof of Kruskal's Uniqueness Theorem

Two CP solutions (**A**,**B**,**C**) and (**D**,**E**,**F**), and (K) holds.

Step 1 (K) →
$$k_{A} \ge 2$$
 $k_{B} \ge 2$ $k_{C} \ge 2$
(K) → (A \circ B) and (C \circ A) and (B \circ C)
have full column rank

- <u>Step 2</u> (K) → condition of Permutation Lemma for (\mathbf{A}, \mathbf{D}) and (\mathbf{B}, \mathbf{E}) and (\mathbf{C}, \mathbf{F})
- $\Rightarrow \quad \mathbf{D} = \mathbf{A} \, \mathbf{\Pi}_{a} \, \mathbf{\Lambda}_{a} \qquad \mathbf{E} = \mathbf{B} \, \mathbf{\Pi}_{b} \, \mathbf{\Lambda}_{b} \qquad \mathbf{F} = \mathbf{C} \, \mathbf{\Pi}_{c} \, \mathbf{\Lambda}_{c}$

<u>Step 3</u> $\Pi_a = \Pi_b = \Pi_c$ and $\Lambda_a \Lambda_b \Lambda_c = \mathbf{I}_R$

Step 1 $2R + 2 \le k_{A} + k_{B} + k_{C}$ $k_{C} \le R$ and $k_{B} \le R \rightarrow k_{A} \ge 2$

 $\operatorname{rank}(\mathbf{A} \circ \mathbf{B}) \geq k_{(\mathbf{A} \circ \mathbf{B})} \geq \min(k_{\mathbf{A}} + k_{\mathbf{B}} - 1, R) = R$

Sidiropoulos & Bro (2000), Ten Berge (2000)

Suppose $k_{A} = 1$ and $a_{1} = 2 a_{2}$ $a_{1} \circ b_{1} \circ c_{1} + a_{2} \circ b_{2} \circ c_{2} =$ $2 a_{2} \circ b_{1} \circ c_{1} + a_{2} \circ b_{2} \circ c_{2} =$ $a_{2} \circ 2 b_{1} \circ (c_{1} - c_{2}) + a_{2} \circ (2 b_{1} + b_{2}) \circ c_{2}$

→ $k_{A} \ge 2$ $k_{B} \ge 2$ $k_{C} \ge 2$ is necessary for uniqueness Suppose rank($\mathbf{A} \circ \mathbf{B}$) < R and ($\mathbf{A} \circ \mathbf{B}$) $\mathbf{n} = \mathbf{0}$ $\mathbf{X}^{(JI \times K)} = (\mathbf{A} \circ \mathbf{B}) \mathbf{C}^{\mathsf{T}} = (\mathbf{A} \circ \mathbf{B}) (\mathbf{C} + \mathbf{z}\mathbf{n}^{\mathsf{T}})^{\mathsf{T}}$ for any vector \mathbf{z}

z can be chosen such that a column of $\mathbf{C} + \mathbf{z}\mathbf{n}^{\mathsf{T}}$ becomes $\mathbf{0} \rightarrow \underline{\mathbf{X}}$ satisfies CP with R - 1 factors

→ rank($\mathbf{A} \circ \mathbf{B}$) = rank($\mathbf{C} \circ \mathbf{A}$) = rank($\mathbf{B} \circ \mathbf{C}$) = R is necessary for uniqueness

<u>Step 2</u> **C** and **F** are $K \times R$ matrices and $k_c \ge 2$

 $q(\mathbf{C})$ = the number of columns of **C** <u>not</u> orthogonal to **y** $q(\mathbf{F})$ = the number of columns of **F** <u>not</u> orthogonal to **y**

To show:
$$q(\mathbf{F}) \leq R - \operatorname{rank}(\mathbf{F}) + 1 \Rightarrow q(\mathbf{C}) \leq q(\mathbf{F})$$

<u>Proof</u> (Sidiropoulos & Bro, 2000)

Construct upper bound and lower bound for $q(\mathbf{F})$

$$\mathbf{X}^{(JI \times K)} \mathbf{y} = (\mathbf{A} \odot \mathbf{B}) \mathbf{C}^{\mathsf{T}} \mathbf{y} = (\mathbf{D} \odot \mathbf{E}) \mathbf{F}^{\mathsf{T}} \mathbf{y}$$

 $(\mathbf{A} \circ \mathbf{B})$ has full column rank

Hence $q(\mathbf{F}) = 0 \rightarrow q(\mathbf{C}) = 0$ span^{\perp}(\mathbf{F}) \subseteq span^{\perp}(\mathbf{C}) \rightarrow span(\mathbf{C}) \subseteq span(\mathbf{F}) \rightarrow rank(\mathbf{C}) \leq rank(\mathbf{F})

 $q(\mathbf{F}) \leq R - \operatorname{rank}(\mathbf{F}) + 1$ $\leq R - \operatorname{rank}(\mathbf{C}) + 1$ $\leq R - k_{\mathbf{C}} + 1$ $\leq k_{\mathbf{A}} + k_{\mathbf{B}} - (R+1)$

$$\sum_{k=1}^{K} y_k \mathbf{X}_k = \mathbf{A} \operatorname{diag}(\mathbf{C}^{\mathsf{T}}\mathbf{y}) \mathbf{B}^{\mathsf{T}} = \mathbf{D} \operatorname{diag}(\mathbf{F}^{\mathsf{T}}\mathbf{y}) \mathbf{E}^{\mathsf{T}}$$

$$q(\mathbf{F}) = \operatorname{rank}(\operatorname{diag}(\mathbf{F}^{\mathsf{T}}\mathbf{y}))$$

- \geq rank(**D** diag(**F**^T**y**) **E**^T)
- = rank(\mathbf{A} diag($\mathbf{C}^{\mathsf{T}}\mathbf{y}$) \mathbf{B}^{T})
- = rank(\mathbf{A}^* diag(\mathbf{t}) \mathbf{B}^{*T})
- \geq rank(**A***) + rank(**B*** diag(**t**)) q(**C**)
- = rank(\mathbf{A}^*) + rank(\mathbf{B}^*) $q(\mathbf{C})$

rank(\mathbf{A}^*) $\geq \min(q(\mathbf{C}), k_{\mathbf{A}})$ rank(\mathbf{B}^*) $\geq \min(q(\mathbf{C}), k_{\mathbf{B}})$

$$q(\mathbf{F}) \geq \min(q(\mathbf{C}), k_{\mathbf{A}}) + \min(q(\mathbf{C}), k_{\mathbf{B}}) - q(\mathbf{C})$$
 (2)

$$k_{\mathbf{A}} + k_{\mathbf{B}} - (R+1) \ge q(\mathbf{F}) \tag{1}$$

(1) and (2) $\rightarrow \min(q(\mathbf{C}), k_{\mathbf{A}}) = \min(q(\mathbf{C}), k_{\mathbf{B}}) = q(\mathbf{C})$ (2) $\rightarrow q(\mathbf{C}) \le q(\mathbf{F})$

<u>Step 3</u> $\mathbf{D} = \mathbf{A} \, \mathbf{\Pi}_a \, \mathbf{\Lambda}_a$ $\mathbf{E} = \mathbf{B} \, \mathbf{\Pi}_b \, \mathbf{\Lambda}_b$ $\mathbf{F} = \mathbf{C} \, \mathbf{\Pi}_c \, \mathbf{\Lambda}_c$

to show: $\Pi_a = \Pi_b = \Pi_c$ and $\Lambda_a \Lambda_b \Lambda_c = \mathbf{I}_R$

If $\Pi_a = \Pi_b$ then we are done.

Proof (Stegeman & Sidiropoulos, 2005)

$$\mathbf{X}^{(JI \times K)} = (\mathbf{A} \odot \mathbf{B}) \mathbf{C}^{\mathsf{T}}$$

= $(\mathbf{A} \Pi \Lambda_{\mathsf{a}} \odot \mathbf{B} \Pi \Lambda_{\mathsf{b}}) (\mathbf{C} \Pi_{\mathsf{c}} \Lambda_{\mathsf{c}})^{\mathsf{T}}$
= $(\mathbf{A} \odot \mathbf{B}) (\mathbf{C} \Pi_{\mathsf{c}} \Lambda_{\mathsf{a}} \Lambda_{\mathsf{b}} \Lambda_{\mathsf{c}} \Pi^{\mathsf{T}})^{\mathsf{T}}$

 $(\mathbf{A} \circ \mathbf{B})$ full column rank $\rightarrow \mathbf{C} = \mathbf{C} \mathbf{\Pi}_{c} \mathbf{\Lambda}_{a} \mathbf{\Lambda}_{b} \mathbf{\Lambda}_{c} \mathbf{\Pi}^{\mathsf{T}}$

 $k_{\mathbf{C}} \geq 2 \rightarrow \mathbf{\Pi}_{c} = \mathbf{\Pi} \text{ and } \mathbf{\Lambda}_{a} \mathbf{\Lambda}_{b} \mathbf{\Lambda}_{c} = \mathbf{I}_{R}$

To show: if (K) holds and

 $\mathbf{D} = \mathbf{A} \, \mathbf{\Pi}_{a} \, \mathbf{\Lambda}_{a} \qquad \mathbf{E} = \mathbf{B} \, \mathbf{\Pi}_{b} \, \mathbf{\Lambda}_{b} \qquad \mathbf{F} = \mathbf{C} \, \mathbf{\Pi}_{c} \, \mathbf{\Lambda}_{c} \, ,$

then $\Pi_a = \Pi_b$

<u>Proof</u> Stegeman & Sidiropoulos (2005) Kruskal (1977)

This completes the proof of

Kruskal's Uniqueness Theorem !!

Proof of Kruskal's Permutation Lemma

C and **F** are $K \times R$ matrices and $k_{c} \ge 2$

For any vector **y**

$$q(\mathbf{F}) \leq R - \operatorname{rank}(\mathbf{F}) + 1 \rightarrow q(\mathbf{C}) \leq q(\mathbf{F})$$

 $q(\mathbf{C})$ = the number of columns of **C** <u>not</u> orthogonal to **y** $q(\mathbf{F})$ = the number of columns of **F** <u>not</u> orthogonal to **y**

To show: $\mathbf{F} = \mathbf{C} \, \mathbf{\Pi} \, \mathbf{\Lambda}$

<u>Proof</u> $q(\mathbf{F}) = 0 \rightarrow q(\mathbf{C}) = 0$

→ span(\mathbf{C}) \subseteq span(\mathbf{F})

 \rightarrow rank(**F**) \geq rank(**C**) \geq $k_{\mathbf{C}} \geq$ 2

Partition the columns of **F** into the sets

$$G_0 = \{ \text{ the all-zero columns of } F \}$$

G_m = { a column **f** of **F** and all nonzero columns of **F** which are proportional to **f** }

$$m = 1, ..., M$$

 $\frac{\text{Definition}}{k-\text{dimensional columns of } \mathbf{F} \text{ is called a}}$

(i) rank(
$$H_k$$
) = k

(ii) H_k contains all columns of **F** in span(H_k)

$$H_0 = G_0 \qquad H_1 = G_0 \cup G_m \qquad H_{rank(\mathbf{F})} = \mathbf{F}$$

y ⊥ **f** and **g** → **y** ⊥ span(**f**, **g**) = span(H₂) rank(**f**, **g**) = 2

together with span(\mathbf{C}) \subseteq span(\mathbf{F}), this yields the following result

Lemma Under conditions of Permutation Lemma # columns **C** in span(H_k) \geq # columns **F** in span(H_k) *k* = 0, 1, ..., rank(**F**). Proof Stegeman & Sidiropoulos (2005) Kruskal (1977) k=0: $k_{\rm C}\geq 2$ \rightarrow $H_0 = G_0$ is empty k = 1:

columns **C** in span(G_m) \geq # columns **F** in span(G_m)

$$m = 1, ..., M$$

$k_{\mathbf{C}} \geq 2 \rightarrow \# \text{ columns } \mathbf{C} \text{ in span}(\mathbf{G}_m) \leq 1$

- $1 \ge \# \text{ columns } \mathbf{C} \text{ in span}(G_m) \ge \\ \# \text{ columns } \mathbf{F} \text{ in span}(G_m) \ge 1$
- hence: # columns **C** in span(G_m) = 1 # columns **F** in span(G_m) = 1
- every column of F has
 a proportional column in C

$\Rightarrow F = C \Pi \Lambda$

permutation matrix $\pmb{\Pi}$ and diagonal matrix $\pmb{\Lambda}$ are unique

This completes the proof of

Kruskal's Permutation Lemma !!

proof above: Stegeman & Sidiropoulos (2005) Kruskal (1977)

alternative proof: Jiang & Sidiropoulos (2004)

References

- Jiang, T. & Sidiropoulos, N.D. (2004). Kruskal's permutation lemma and the identification of Candecomp/Parafac and bilinear models with constant modulus constraints. *IEEE Transactions on Signal Processing*, **52**, 2625-2636.
- Kruskal, J.B. (1977). Three-way arrays: rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics. *Linear Algebra and its Applications*, **18**, 95-138.
- Sidiropoulos, N.D. & Bro, R. (2000). On the uniqueness of multilinear decomposition of *N*-way arrays. *Journal of Chemometrics*, **14**, 229-239.
- Stegeman, A. & Sidiropoulos, N.D. (2005). On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition. Submitted.
- Ten Berge, J.M.F. (2000). The k-rank of a Khatri-Rao product. *Unpublished Note*, Heymans Institute of Psychological Research, University of Groningen, The Netherlands.