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Candecomp/Parafac (CP)

X is a real-valued 7 xJ xK array with slices Xy
The CP model of X with R factors is
X,=A C,B'"+E, k=1,.. K

Component matrices A (/ xR ), B (JxXR) and
C (K xR ) with diagonals of C, as rows

R
CP is also written as X = Zar ob,oc +E
=1



Unigueness in CP

Unigueness is studied for a fixed residual array
€= fixed fitted model array

A CP solution can only be unique up to
rescaling/counterscaling and jointly permuting
columns of A, B and C (essential unigueness )

Kruskal’s condition (1977) for essential
uniqueness:
2R+2SkA+kB+kc

k-rank of A = max number k& such that every
set of k& columns of A is linearly independent



Kruskal’s Unigueness Theorem

Let (A,B,C) and (D,E,F) be two full CP decompositions
of array X , both with R components. If

2R+ 2= Kkn+ kg + k¢, (K)

then there exists a unique permutation matrix I and
uniqgue diagional matrices A,, A, A. such that

D=AIA, E=BIA, F=CIA.

and AN AN A =1,



Kruskal’s Permutation Lemma

Let C and F be K xR matrices and let A = 2.
Suppose the following condition holds:

If a vector y is orthogonal to /# = rank(F) — 1 columns
of F, then y is orthogonal to at least # columns of C.

Then there exists a unique permutation matrix Il and a
unique diagional matrix A such that

F=CINA



Proof of Kruskal’s Unigueness Theorem

Two CP solutions (A,B,C) and (D,E,F), and (K) holds.

Stepl (K) 2 Aa=2 k=2 k=2
(K) » (AoB) and (Co A) and (B o C)
have full column rank

Step 2 (K) =>» condition of Permutation Lemma for
(A,D) and (B,E) and (C,F)

> D=AIT;A, E=BILA; F=CI.A

Step3 M,=MN,=MN. and A, A, A. =1,




Stepl 2R+ 2 < Kk + kg + Ac

/(cSR and /(BSR -> kAZZ

rank(Ae B) =2 Kkaos) = mMin(kla+ g—1,R) =R

Sidiropoulos & Bro (2000), Ten Berge (2000)



Suppose .o =1 and a;=2a;

aiobioci+a,ob,o0c, =
2aobioci+a,ob,oc, =

azozblo(cl—C2)+azo(2b1+bz)OCz

=2 k=2 k=2 Kk =2 isnecessary
for uniqueness



Suppose rank(AeB) <R and (AeB)n=20
X7*® = (AoeB)C' = (Ao B)(C+2zn")'

for any vector z

Z can be chosen such that a column of C + zn'
becomes 0 = X satisfies CP with R— 1 factors

= rank(A o B) = rank(C e A) = rank(B e C) = R

IS necessary for uniqueness



Step 2 Cand F are K xR matrices and & = 2

g(C) = the number of columns of C not orthogonal to y
¢(F) = the number of columns of F not orthogonal to y

Toshow: ¢F) < R-rank(F)+1 = ¢C) < ¢(F)

Proof  (Sidiropoulos & Bro, 2000)

Construct upper bound and lower bound for ¢(F)
XKy =(AoB)C'y=(DoE)Fly

(A o B) has full column rank
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Hence gF)=0 = ¢gC) =0
spanD(F) L spanD(C) = span(C) N span(F)

= rank(C) < rank(F)

IA

d(F) R—rank(F) + 1
R—rank(C) + 1
R— ke + 1

Kn + kg — (R+1)

IAIA

IA
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> v X, = Adiag(C'y) B' = D diag(F'y) E'
k=1

«F)

AVAR | v 1l

rank(diag(F'y))

rank(D diag(F'y) E")

rank(A diag(C'y) B")

rank(A* diag(t) B*")

rank(A*) + rank(B* diag(t)) — g(C)
rank(A*) + rank(B*) — g(C)
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rank(A*) = min(g(C), Aa)
>

rank(B*) min(g(C), Ag)
g(F) =2 min(g(C), k&) + min(g(C), &) — g(C) (2)
Kkn + kg — (R+1) = d(F) (1)

(1) and (2) 2 min(4(C), k&) = min(g(C), k) = AC)

(2) 2 4(C) = F)
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Step3 D=ATI,A, E=BIA; F=CIA.

toshow: MNM,=MN,=N. and A, A, A.=1;
If M, =M, then we are done.

Proof (Stegeman & Sidiropoulos, 2005)
X0 = (AeB)C'

(ANMA,eBNA)(CHOA)

(AoB)(CN.A, A, AT

(Ao B) ful coumnrank & C=CHN. A, AAIT

ke=2 = Nc=N and A;AA=14
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To show: if (K) holds and

D=AI;A, E=BI A, F=CINA.,

then M, =,

Proof

Stegeman & Sidiropoulos (2005)
Kruskal (1977)

This completes the proof of

Kruskal’s Uniqueness Theorem !!
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Proof of Kruskal's Permutation Lemma

C and F are K xR matrices and Ac = 2
For any vector y
JF) < R-rank(F)+1 = dgC) < gF)

g(C) = the number of columns of C not orthogonal to y
g(F) = the number of columns of F not orthogonal to y

To show: F=CIA
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Proof ¢gF)=0 =2 ¢C)=0

= span(C) LI span(F)

= rank(F) = rank(C) > A = 2

Partition the columns of F into the sets

Go

G

= { the all-zero columns of F }

= { a column f of F and all nonzero columns
of F which are proportional to f }

m=1,.., M
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Definition a subset H; of columns of F is called a
k-dimensional column set if
(i) rank(Hy) = &
(ii) Hx contains all columns of F in span(Hy)

Ho = Go H; = Gy U G Hrankr) = F

vy U fand g = y U span(f, g) = span(H,)
rank(f, g) = 2

together with span(C) LI span(F), this yields the
following result
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Lemma Under conditions of Permutation Lemma

# columns C in span(Hs) = # columns F in span(Hy)
k=20,1, .., rank(F).

Proof Stegeman & Sidiropoulos (2005)
Kruskal (1977)

0: ka 2 -> Ho = G IS empty
1:

K
K
# columns C in span(G,;) = # columns F in span(G,,)

m=1,.., M
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ke = 2 -> # columns C in span(G,,) <

1 = # columns Cin span(G,,) =
m =

# columns F in span(G

# columns C in span(G,;) = 1
# columns F in span(G,;) = 1

every column of F has
a proportional column in C

F=CINA

permutation matrix I and diagonal matrix A
are unique
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This completes the proof of

Kruskal’'s Permutation Lemma !!

proof above: Stegeman & Sidiropoulos (2005)
Kruskal (1977)

alternative proof: Jiang & Sidiropoulos (2004)
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