Why do degenerate solutions occur in Candecomp/Parafac ?

Alwin Stegeman University of Groningen The Netherlands

Candecomp/Parafac (CP)

- <u>X</u> is a real-valued $I \times J \times K$ array with slices X_k
- The CP model of <u>X</u> with *R* factors is

$$X_k = A C_k B^T + E_k k = 1, ..., K$$

 Component matrices A (I×R), B (J×R) and C (K×R) with diagonals of C_k as rows

• CP is also written as
$$\underline{\mathbf{X}} = \sum_{r=1}^{R} \mathbf{a}_{r} \circ \mathbf{b}_{r} \circ \mathbf{c}_{r} + \underline{\mathbf{E}}$$

Uniqueness in CP

- Uniqueness is studied for a fixed residual array
 ←→ fixed fitted model array
- A CP solution can only be unique up to rescaling/counterscaling and jointly permuting columns of A, B and C
- Kruskal's (1977) uniqueness condition:

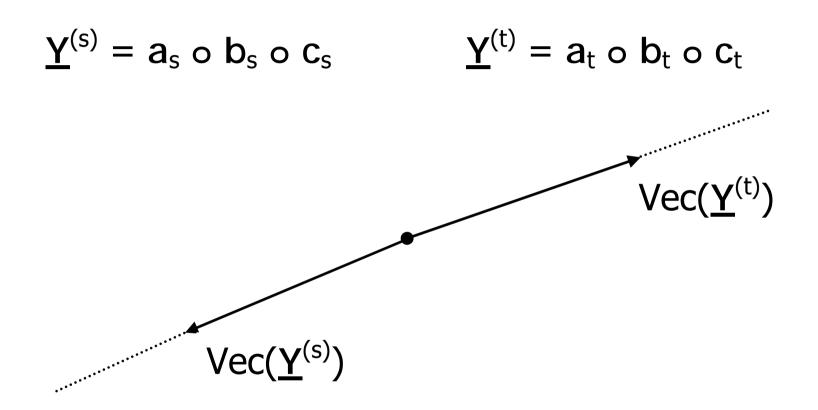
$$2R + 2 \leq k_{\rm A} + k_{\rm B} + k_{\rm C}$$

• Avoid scaling indeterminacy: norm the columns of two component matrices to length 1

Degenerate CP solutions

- <u>Two-factor degeneracy</u>
 - 1. $a_s \approx \pm a_t$ $b_s \approx \pm b_t$ $c_s \approx \pm c_t$
 - 2. product of three correlations tends to -1
 - 3. magnitudes of c_s and c_t become arbitrarily large

Two-factor degeneracy

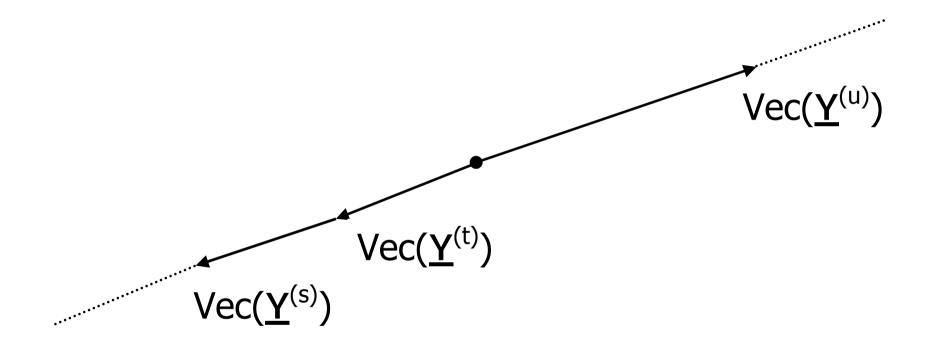


 $\underline{\mathbf{Y}}^{(s)} + \underline{\mathbf{Y}}^{(t)}$ remains "small" and contributes to a better CP fit

Degenerate CP solutions

- <u>Three-factor degeneracy</u>
 - 1. $a_s \approx \pm a_t \approx \pm a_u$ $b_s \approx \pm b_t \approx \pm b_u$
 - 2. $c_s \approx \delta_1 c_t \approx \delta_2 c_u$ for constants δ_1 and δ_2
 - 3. magnitudes of c_s, c_t and c_u become arbitrarily large
 - 4. $c_s \pm c_t \pm c_u$ remains "small"

Three-factor degeneracy



 $\underline{\mathbf{Y}}^{(s)} + \underline{\mathbf{Y}}^{(t)} + \underline{\mathbf{Y}}^{(u)}$ remains "small" and contributes to a better CP fit

Example for $3 \times 3 \times 2$ with R = 3

$$\mathbf{A} = \begin{bmatrix} 0.48 & 0.46 & -0.47 \\ -0.66 & -0.65 & 0.66 \\ -0.57 & -0.60 & 0.58 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 0.72 & -0.69 & 0.71 \\ 0.61 & -0.65 & 0.63 \\ 0.33 & -0.31 & 0.32 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 653 & -625 & 1278 \\ 2162 & -2239 & 4398 \end{bmatrix}$$

factor 1 \approx factor 2 \approx -2 · factor 3

Idea of Kruskal, Harshman and Lundy (1989)

- "Degenerate CP solutions occur when the CP objective function does not have a minimum but an infimum"
- Ten Berge, Kiers & De Leeuw (1988) proved this for a specific 2×2×2 array and *R* = 2
- Paatero (2000): degenerate sequences of 2×2×2 arrays of rank 2 approximating a rank-3 array

The CP problem

Minimize
$$\left\| \underline{\mathbf{X}} - \underline{\mathbf{Y}} \right\|^2$$

subject to $\underline{\mathbf{Y}} \in D_R = \{ \underline{\mathbf{Y}} \text{ with rank } \leq R \}$

Lim (2004): the set D_R is not closed for $R \ge 2$

 \rightarrow CP may not have a minimum if <u>X</u> lies outside D_R

Consider all $p \times q \times 2$ arrays

- Random $p \times q \times 2$ array <u>X</u> with $p \ge q$
- For which {*p*,*q*,*R* } do degenerate solutions occur?
- Typical rank (Ten Berge & Kiers, 1999) of X:

 $\begin{array}{ll} \min(p, 2q) & \text{if } p > q \\ \{p, p+1\} & \text{if } p = q \end{array}$

• If $R \ge \operatorname{rank}(\underline{X})$, then no degenerate solutions occur

<u>X</u>	rank(<u>X</u>) R		Degeneracy?	
p = q	<i>p</i> +1	R = p	always	
p = q	<i>p</i> +1	<i>R</i> < <i>p</i>	sometimes	
p = q	p	<i>R</i> < <i>p</i>	sometimes	
p > q	min(<i>p</i> , 2 <i>q</i>)	(p, 2q) > R > q	no	
p > q	min(<i>p</i> , 2 <i>q</i>)	R = q	sometimes	
p > q	min(<i>p</i> , 2 <i>q</i>)	R < q	sometimes	

Stegeman (2006 b)

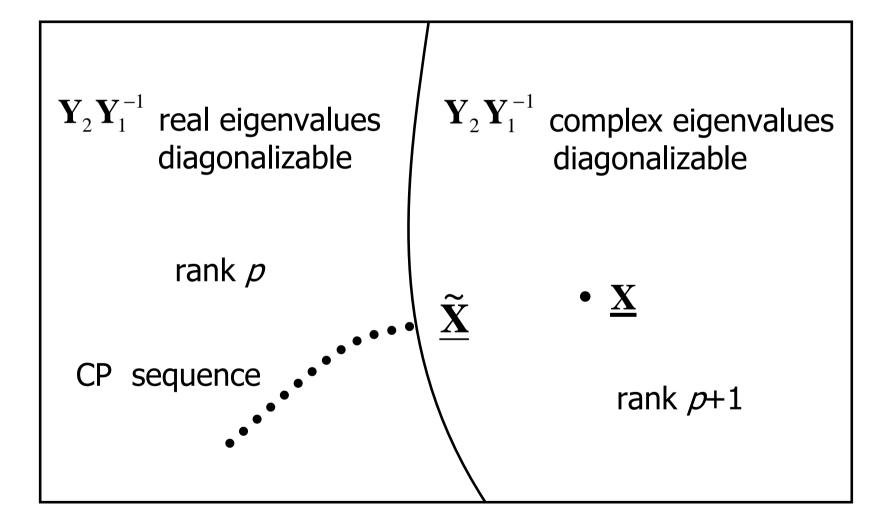
Consider $p \times p \times 2$ arrays with R = p

$\mathbf{Y}_{2}\mathbf{Y}_{1}^{-1}$	eigenvalues all real	some complex eigenvalues
diagonalizable	rank(<u>Y</u>)= <i>p</i> positive volume	rank(<u>Y</u>)≥ <i>p</i> +1 positive volume
not diag.	rank(<u>Y</u>)≥ <i>p</i> +1 zero volume	rank(<u>Y</u>)≥ <i>p</i> +1 zero volume

Ten Berge (1991), Ja' Ja' (1979)

Typical rank = $\{p, p+1\}$ (Ten Berge & Kiers, 1999)

$2p^2$ - dimensional space of $p \times p \times 2$ arrays



Boundary arrays

 $\mathbf{Y}_{2}\mathbf{Y}_{1}^{-1}$ has real eigenvalues, but not all distinct

$$\mathbf{Y}_{2}\mathbf{Y}_{1}^{-1}$$
 diagonalizable → rank *p* (type 1)
 $\mathbf{Y}_{2}\mathbf{Y}_{1}^{-1}$ not diagonalizable → rank ≥ *p*+1 (type 2)

dimensionality (type 1) < dimensionality (type 2)

In practice only boundary arrays $\underline{\widetilde{X}}$ of type 2 are encountered

Let random <u>X</u> have rank p+1. There holds that:

- (I) the CP objective function does not have a minimum, but an infimum, and
- (II) any sequence of CP solutions of which the objective value approaches the infimum, will become degenerate.

Stegeman (2006 a)

Y rank *p* → eigendecomposition $\mathbf{Y}_{2}\mathbf{Y}_{1}^{-1} = \mathbf{K} \Lambda \mathbf{K}^{-1}$ A rank-*p* decomposition of **Y** is: $\mathbf{Y}_{1} = \mathbf{K} \mathbf{I}_{p} (\mathbf{K}^{-1} \mathbf{Y}_{1})$ $\mathbf{Y}_{2} = \mathbf{K} \Lambda (\mathbf{K}^{-1} \mathbf{Y}_{1})$

$$\mathbf{A} = \mathbf{K} \qquad \mathbf{B} = (\mathbf{K}^{-1} \ \mathbf{Y}_1)^T \qquad \mathbf{C} = \begin{bmatrix} 1 & \mathbf{L} & 1 \\ \lambda_1 & \mathbf{L} & \lambda_p \end{bmatrix}$$

Kruskal holds: $2p + 2 \le k_A + k_B + k_C = p + p + 2$

→ <u>uniqueness</u> (if all eigenvalues are different)

Sequence of solutions $\,\underline{Y}\,$ converges to $\,\underline{\widetilde{X}}\,$

 $\mathbf{Y}_{2}\mathbf{Y}_{1}^{-1} = \mathbf{K} \ \mathbf{\Lambda} \ \mathbf{K}^{-1}$ converges to $\mathbf{\widetilde{X}}_{2}\mathbf{\widetilde{X}}_{1}^{-1}$

When the CP algorithm terminates:

- $\mathbf{A} = \mathbf{K}$ has some columns close to linear dependence
- $\mathbf{B} = (\mathbf{K}^{-1} \ \mathbf{Y}_1)^T$ has large magnitudes in these columns

•
$$\mathbf{C} = \begin{bmatrix} 1 & \mathbf{L} & 1 \\ \lambda_1 & \mathbf{L} & \lambda_p \end{bmatrix}$$
 has these columns nearly identical

X	rank(<u>X</u>)	R	Degeneracy?	
p = q	<i>p</i> +1	R = p	always	OK
p = q	<i>p</i> +1	<i>R</i> < <i>p</i>	sometimes	
p = q	p	R < p	sometimes	
p > q	min(<i>p</i> , 2 <i>q</i>)	(p, 2q) > R R > q	no	next
p > q	min(<i>p</i> , 2 <i>q</i>)	R = q	sometimes	
p > q	min(<i>p</i> , 2 <i>q</i>)	R < q	sometimes	

Stegeman (2006 b)

Consider $p \times q \times 2$ arrays with (p, 2q) > R > q

Let
$$W_R = \{ \underline{Y} \text{ with rank } [Y_1|Y_2] \leq R \}$$

$$D_R = \{ \underline{\mathbf{Y}} \text{ with } \operatorname{rank}(\underline{\mathbf{Y}}) \leq R \} \subset W_R$$

- W_R is a closed set
- rank(\underline{X}) = min(p, 2q) $\rightarrow \underline{X}$ does not lie in W_R
- approximation of \underline{X} from $W_{\mathcal{R}}$ always has an optimal solution $\underline{\widetilde{X}}$

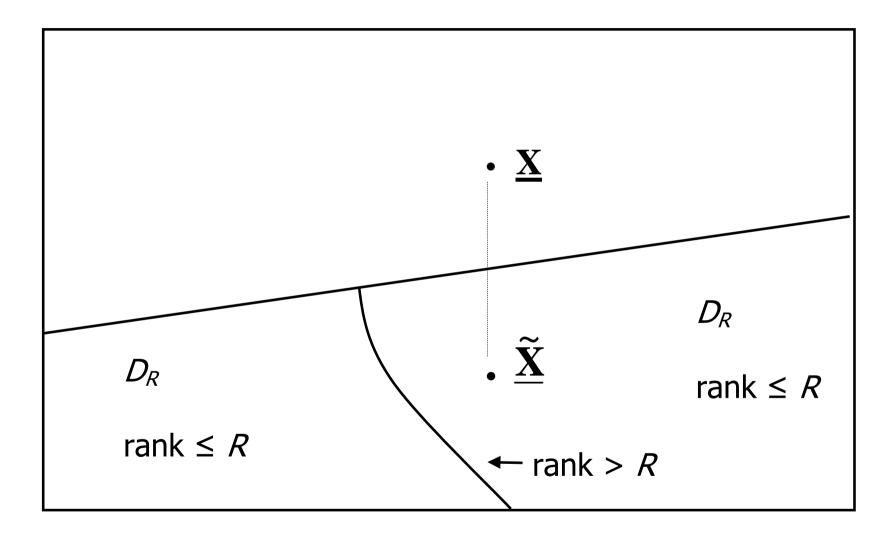
<u>Y</u> lies in $W_R \leftarrow \rightarrow$ there exists a non-singular S with

$$\mathbf{S} [\mathbf{Y}_1 | \mathbf{Y}_2] = \begin{bmatrix} \mathbf{H}_1 & \mathbf{H}_2 \\ \mathbf{O} & \mathbf{O} \end{bmatrix} \quad \text{where } \mathbf{H}_i \text{ are } \mathbf{R} \times \mathbf{q}$$

 $rank(\underline{Y}) = rank(\underline{H})$ and typical rank $\underline{H} = R$

- \rightarrow dimensionality D_R = dimensionality W_R
- → arrays in W_R of rank higher than R lie in a set of lower dimensionality

$p \times q \times 2$ arrays with (p, 2q) > R > q



X	rank(<u>X</u>)	R	Degeneracy?	
p = q	<i>p</i> +1	R = p	always	OK
p = q	<i>p</i> +1	<i>R</i> < <i>p</i>	sometimes	
p = q	p	R < p	sometimes	
p > q	min(<i>p</i> , 2 <i>q</i>)	(p, 2q) > R R > q	no	ОК
p > q	min(<i>p</i> , 2 <i>q</i>)	R = q	sometimes	next
p > q	min(<i>p</i> , 2 <i>q</i>)	R < q	sometimes	

Stegeman (2006 b)

Consider $p \times q \times 2$ arrays with p > R = q

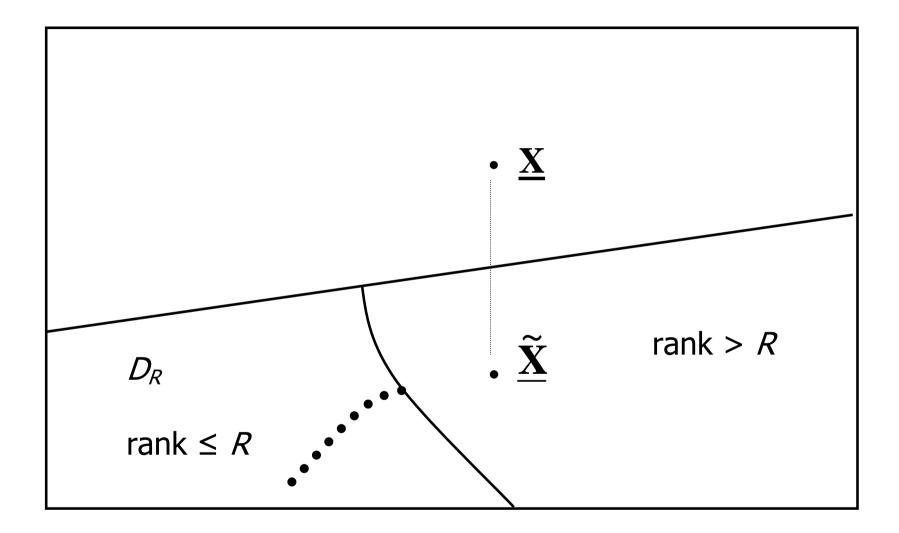
 $W_R = \{ \underline{\mathbf{Y}} \text{ with rank } [\mathbf{Y}_1 | \mathbf{Y}_2] \leq R \}$

$$\underline{\mathbf{Y}} \text{ lies in } W_R \quad \boldsymbol{\leftarrow} \quad \mathbf{S} \left[\mathbf{Y}_1 | \mathbf{Y}_2 \right] = \begin{bmatrix} \mathbf{H}_1 & \mathbf{H}_2 \\ \mathbf{O} & \mathbf{O} \end{bmatrix}, \text{ with } \mathbf{H}_i \quad q \times q$$

 $rank(\underline{Y}) = rank(\underline{H})$ and typical rank $\underline{H} = \{q, q+1\}$

- \rightarrow dimensionality D_R = dimensionality W_R
- → arrays in W_R of rank higher than R = q lie in a set of equal dimensionality

 $p \times q \times 2$ arrays with p > R = q



X	rank(<u>X</u>)	R	Degeneracy?	
p = q	<i>p</i> +1	R = p	always	OK
p = q	<i>p</i> +1	<i>R</i> < <i>p</i>	sometimes	next
p = q	p	<i>R</i> < <i>p</i>	sometimes	next
p > q	min(<i>p</i> , 2 <i>q</i>)	(p, 2q) > R R > q	no	ОК
p > q	min(<i>p</i> , 2 <i>q</i>)	R = q	sometimes	OK
p > q	min(<i>p</i> , 2 <i>q</i>)	R < q	sometimes	next

Stegeman (2006 b)

$$W_{R} = \{ \underline{\mathbf{Y}} \text{ with rank } [\mathbf{Y}_{1} | \mathbf{Y}_{2}] \leq R \text{ and rank } | \mathbf{Y}_{2} | \leq R \}$$

 $D_R = \{ \underline{\mathbf{Y}} \text{ with } \operatorname{rank}(\underline{\mathbf{Y}}) \leq R \} \subset W_R$

- W_R is a closed set
- $\underline{\mathbf{X}}$ does not lie in W_R
- approximation of \underline{X} from $W_{\mathcal{R}}$ always has an optimal solution $\underline{\widetilde{X}}$

Y lies in
$$W_R \iff S Y_i T = \begin{bmatrix} G_i & O \\ O & O \end{bmatrix}$$
, with $G_i R \times R$

 $rank(\underline{Y}) = rank(\underline{G})$ and typical rank $\underline{G} = \{R, R+1\}$

- \rightarrow dimensionality D_R = dimensionality W_R
- → arrays in W_R of rank higher than R lie in a set of equal dimensionality

Conclusions for $p \times q \times 2$ arrays

- the CP objective function may not have a minimum if the boundary of the set *D_R* consists (partly) of arrays with rank larger than *R*
- this is "caused by" the two-valued typical rank of p×p×2 arrays
- this type of degeneracy does not occur in the complex-valued CP model
- a sequence of degenerate CP solutions is unique at every point

All known arrays with typical rank $\{k, k+1\}$

asymmetric slices		symmetric slices	
<i>p</i> × <i>p</i> ×2	{ <i>p</i> , <i>p</i> +1}	<i>p</i> × <i>p</i> ×2	{ <i>p</i> , <i>p</i> +1}
3×3×5	{5,6}	3×3×5	{5,6}
8×4×3	{8,9}	3×3×4	{4,5}

Ten Berge & Kiers (1999), Ten Berge (2000,2004) Ten Berge, Sidiropoulos & Rocci (2004)

Take <u>X</u> random with rank(<u>X</u>)=k+1 and R = k

Symmetric slices: CP solution has A = B (Indscal)

Array size	Typical rank	Degeneracy?	Unique?
p×p×2	{ <i>p</i> , <i>p</i> +1}	always	yes
<i>p</i> × <i>p</i> ×2 (s)	{ <i>p</i> , <i>p</i> +1}	always	yes
3×3×5	{5,6}	sometimes	partially
3×3×5 (s)	{5,6}	always	no
3×3×4 (s)	{4,5}	always	yes
8×4×3	{8,9}	always (?)	no

Stegeman (2006 c)

References

- Ja' Ja', J. (1979). Optimal evaluation of pairs of bilinear forms. *SIAM Journal on Computing*, 8, 443-462.
- Kruskal, J.B. (1977). Three-way arrays: rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics. *Linear Algebra and its Applications*, **18**, 95-138.
- Kruskal, J.B., Harshman, R.A. & Lundy, M.E. (1989). How 3-MFA data can cause degenerate Parafac solutions, among other relationships. In: *Multiway Data Analysis*, Coppi R. & Bolasco, S. (editors), North-Holland, 115-121.
- Lim, L-H. (2004). What's possible and what's impossible in tensor decompositions \ approximation. Talk at ARCC Tensor Decompositions Workshop. Pdf available at: <u>http://csmr.ca.sandia.gov/~tgkolda/tdw2004/</u>
- Paatero, P. (2000). Construction and analysis of degenerate Parafac models. *Journal of Chemometrics*, 14, 285-299.
- Stegeman, A. (2006 a). Degeneracy in Candecomp/Parafac explained for *p*×*p*×2 arrays of rank *p*+1 or higher. *Psychometrika*, to appear.
- Stegeman, A. (2006 b). Degeneracy in Candecomp/Parafac explained for random *p*×*q*×2 arrays. Submitted.
- Stegeman, A. (2006 c). Degeneracy in Candecomp/Parafac and Indscal explained for several three-sliced arrays with a two-valued typical rank. Submitted.
- Ten Berge, J.M.F., Kiers, H.A.L. & De Leeuw, J. (1988). Explicit Candecomp/Parafac solutions for a contrived 2×2×2 array of rank three. *Psychometrika*, 53, 579-584.
- Ten Berge, J.M.F. (1991). Kruskal's polynomial for 2×2×2 arrays and a generalization to 2×*n*×*n* arrays. *Psychometrika*, 56, 631-636.

- Ten Berge, J.M.F. & Kiers, H.A.L. (1999). Simplicity of core arrays in three-way principal component analysis and the typical rank of *p*×*q*×2 arrays. *Linear Algebra and its Applications*, 294, 169-179.
- Ten Berge, J.M.F. (2000). The typical rank of tall three-way arrays. *Psychometrika*, 65, 525-532.
- Ten Berge, J.M.F. (2004). Partial uniqueness in Candecomp/Parafac. *Journal of Chemometrics*, 18, 12-16.
- Ten Berge, J.M.F., Sidiropoulos, N.D. & Rocci, R. (2004). Typical rank and Indscal dimensionality for symmetric three-way arrays of order *I*×2×2 or *I*×3×3. *Linear Algebra and its Applications*, 388, 363-377.