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Candecomp/Parafac (CP) 
 
 

•     X is a real-valued I ×J ×K  array with slices Xk 
 

•     The CP model of X with R  factors is 
   

Xk = A  Ck  BT + Ek   k = 1, �, K 
 
•  Component matrices A (I ×R ), B (J ×R ) and  

   C (K ×R ) with diagonals of Ck  as rows 
 

•     CP is also written as 
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Uniqueness in CP 
 

•    Uniqueness is studied for a fixed residual array 
!"  fixed fitted model array    

 
•  A CP solution can only be unique up to 

rescaling/counterscaling and jointly permuting 
columns of A, B and C 

 
•    Kruskal�s (1977) uniqueness condition: 

 
       2R + 2 ≤ kA + kB + kC  
 

•    Avoid scaling indeterminacy: norm the columns  
of two component matrices to length 1 
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Degenerate CP solutions 

 
 

•     Two-factor degeneracy  
 

1. as ≈ ± at  bs ≈ ± bt  cs ≈ ± ct   
  
  2.  product of three correlations tends to  �1  
 

3.  magnitudes of  cs  and  ct  become  
 arbitrarily large  
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Two-factor degeneracy 
 
 

Y(s) = as ๐ bs ๐ cs   Y(t) = at ๐ bt ๐ ct  
 
 
 
 
 
 
 
 

 
Y(s) +  Y(t)  remains �small� and contributes  

to a better CP fit 

Vec(Y(t))

Vec(Y(s))
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Degenerate CP solutions 
 
 

•     Three-factor degeneracy  
 

1.  as ≈ ± at ≈ ± au   bs ≈ ± bt ≈ ± bu   
 

2.  cs ≈ δ1 ct ≈ δ2 cu for constants  δ1 and δ2 

 
3.  magnitudes of  cs , ct  and  cu  become  

 arbitrarily large  
 

4.  cs ± ct ± cu  remains �small� 
 
 



 7 

Three-factor degeneracy 
 
 
 
 
 
 
 
 
 
 

 
Y(s) +  Y(t) +  Y(u)  remains �small� and contributes  

to a better CP fit 
 

Vec(Y(t))

Vec(Y(s))

Vec(Y(u))
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Example for 3×3×2 with R = 3 
 

 
 
 
 
 
 
 
 
 
 

factor 1  ≈  factor 2  ≈  � 2٠factor 3  
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Idea of Kruskal, Harshman and Lundy (1989) 
 
 

•    �Degenerate CP solutions occur when the CP   
     objective function does not have a minimum but    
     an infimum� 
 
•     Ten Berge, Kiers & De Leeuw (1988) proved this  
     for a specific 2×2×2 array and R = 2 
 
•     Paatero (2000): degenerate sequences of 2×2×2  
     arrays of rank 2 approximating a rank-3 array 
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The CP problem 
 
 

Minimize  
2

YX −  
 

     subject to  Y ∈  DR  =  { Y  with rank ≤ R } 
         
 
 
Lim (2004):  the set DR  is not closed for R ≥ 2 
 
"  CP may not have a minimum if  X  lies outside DR
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Consider all p×q×2 arrays 
 
 

•  Random p×q×2 array X with p ≥ q 
 
•  For which {p,q,R } do degenerate solutions occur? 
 
•  Typical rank (Ten Berge & Kiers, 1999) of X:  

 
   min(p, 2q)  if  p > q 
   {p, p+1}  if  p = q 
 

•  If R ≥ rank(X), then no degenerate solutions occur 
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Stegeman (2006 b) 

X rank(X) R Degeneracy? 

p = q p+1 R = p always 

p = q p+1 R < p sometimes 

p = q p R < p sometimes 

p > q min(p, 2q) (p, 2q) > R > q no 

p > q min(p, 2q) R = q sometimes 

p > q min(p, 2q) R < q sometimes 
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Consider p×p×2 arrays with R = p 
 

 eigenvalues   
all real 

some complex 
eigenvalues 

diagonalizable rank(Y)=p 
positive volume

rank(Y)≥p+1 
positive volume

not diag. rank(Y)≥p+1 
zero volume 

rank(Y)≥p+1 
zero volume 

 
Ten Berge (1991), Ja� Ja� (1979) 
 
Typical rank = {p, p+1} (Ten Berge & Kiers, 1999) 

1
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−YY
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2p2 - dimensional space of p×p×2 arrays 
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rank p 
•  X 

  X
~

 

CP  sequence

1
12
−YY  complex eigenvalues

        diagonalizable 
 

rank p+1 
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Boundary arrays 
 
             has real eigenvalues, but not all distinct 
 
 

diagonalizable " rank p           (type 1) 
 

not diagonalizable " rank ≥ p+1  (type 2) 
 
 
dimensionality (type 1)  <  dimensionality (type 2) 
 
In practice only boundary arrays       of type 2 are 
encountered  
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Result for p×p×2 arrays with R = p 

 
 

Let random X have rank p+1. There holds that:  
 
(I)  the CP objective function does not have a    
       minimum, but an infimum, and 
 
(II) any sequence of CP solutions of which the   
       objective value approaches the infimum, will   
       become degenerate. 
 
Stegeman (2006 a) 
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Y  rank p  "  eigendecomposition 
 
A rank-p decomposition of Y is: 
 
 
 
 
 
 
 
Kruskal holds: 
 
"  uniqueness (if all eigenvalues are different)  
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Sequence of solutions  Y  converges to  
 
                             converges to 
 
When the CP algorithm terminates: 
 

•     has some columns close to linear  
     dependence 
 

•              has large magnitudes in these 
          columns 
 

•             has these columns nearly  
               identical 
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Stegeman (2006 b) 

X rank(X) R Degeneracy?  

p = q p+1 R = p always OK 

p = q p+1 R < p sometimes  

p = q p R < p sometimes  

p > q min(p, 2q) (p, 2q) > R 
R > q no next 

p > q min(p, 2q) R = q sometimes  

p > q min(p, 2q) R < q sometimes  
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Consider p×q×2 arrays with  (p,2q) >R >q 

 
 

Let   WR = { Y  with rank [Y1|Y2] ≤ R } 
 
   DR  = { Y  with rank(Y) ≤ R }  ⊂  WR  
 

•   WR  is a closed set 
 
•   rank(X) = min(p,2q)  "  X does not lie in WR  
 
•   approximation of  X  from WR  always has  

an optimal solution  X
~
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Y  lies in WR  !"  there exists a non-singular S with 
 
 
S [Y1|Y2] =                      where  Hi  are R × q 
 
 
 
rank(Y) = rank(H)   and   typical rank H = R 
 
"  dimensionality DR  =  dimensionality WR   
 
"  arrays in WR  of rank higher than R  lie in a set  

 of lower dimensionality 
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p×q×2 arrays with  (p,2q) >R >q 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

rank > R

DR 
 
rank ≤ R 

�  X 

•  
X
~

 

DR 
 
rank ≤ R 
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Stegeman (2006 b) 

X rank(X) R Degeneracy?  

p = q p+1 R = p always OK 

p = q p+1 R < p sometimes  

p = q p R < p sometimes  

p > q min(p, 2q) (p, 2q) > R 
R > q no OK 

p > q min(p, 2q) R = q sometimes next 

p > q min(p, 2q) R < q sometimes  
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Consider p×q×2 arrays with  p >R = q 
 
 
WR = { Y  with rank [Y1|Y2] ≤ R } 
 
 
Y lies in WR  !"  S [Y1|Y2] =              , with Hi  q ×q 
 
 
rank(Y) = rank(H)   and   typical rank H = {q, q+1} 
 
"  dimensionality DR  =  dimensionality WR   
 
"  arrays in WR  of rank higher than R = q  lie in  

a set of equal dimensionality 
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p×q×2 arrays with  p >R = q 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

rank > R
DR 
 
rank ≤ R 

�  X 
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X
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Stegeman (2006 b) 

X rank(X) R Degeneracy?  

p = q p+1 R = p always OK 

p = q p+1 R < p sometimes next 

p = q p R < p sometimes next 

p > q min(p, 2q) (p, 2q) > R 
R > q no OK 

p > q min(p, 2q) R = q sometimes OK 

p > q min(p, 2q) R < q sometimes next 
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Consider p×q×2 arrays with  p ≥q > R 
 
 

WR = { Y  with rank [Y1|Y2] ≤ R   and  rank 








2

1

Y

Y

 ≤ R } 

 
DR  = { Y  with rank(Y) ≤ R }  ⊂  WR  
 

•   WR  is a closed set 
 
•    X does not lie in WR  
 
•   approximation of  X  from WR  always has  

an optimal solution  X
~
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Y  lies in WR   !"  S Yi T = 



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 , with Gi  R × R 
 
 
rank(Y) = rank(G)   and   typical rank G = {R, R+1} 
 
"  dimensionality DR  =  dimensionality WR   
 
"  arrays in WR  of rank higher than R  lie in  

a set of equal dimensionality 
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Conclusions for p×q×2 arrays 
 
   
•    the CP objective function may not have a minimum  

if the boundary of the set  DR  consists (partly) of 
arrays with rank larger than R 
 

•    this is �caused by� the two-valued typical rank of  
p×p×2 arrays 
 

•    this type of degeneracy does not occur in the  
complex-valued CP model 

 
•    a sequence of degenerate CP solutions is unique at  

every point 
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All known arrays with typical rank {k,k+1} 

 
Ten Berge & Kiers (1999), Ten Berge (2000,2004) 
Ten Berge, Sidiropoulos & Rocci (2004) 
 
Take X random with rank(X)=k +1 and R =k  
 
Symmetric slices:  CP solution has  A = B  (Indscal) 

asymmetric slices symmetric slices 

p×p×2 {p,p+1} p×p×2 {p,p+1} 

3×3×5 {5,6} 3×3×5 {5,6} 

8×4×3 {8,9} 3×3×4 {4,5} 
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Stegeman (2006 c) 
 

Array size Typical rank Degeneracy? Unique? 

p×p×2 {p,p+1} always yes 

p×p×2 (s) {p,p+1} always yes 

3×3×5  {5,6} sometimes partially 

3×3×5 (s) {5,6} always no 

3×3×4 (s) {4,5} always yes 

8×4×3 {8,9} always (?) no 
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