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Candecomp/Parafac (CP)

X is a real-valued 7 xJ xK array with slices X,
The CP model of X with R factors is
X,=A C, B"+E, k=1,.. K

Component matrices A (/ xR ), B (JxR) and
C (K xR ) with diagonals of C, as rows

R
CP is also written as X = Zar ob,oc +E
=1



Unigueness in CP

Unigueness is studied for a fixed residual array
€= fixed fitted model array

A CP solution can only be unique up to
rescaling/counterscaling and jointly permuting
columns of A, B and C

Kruskal’s (1977) uniqueness condition:

2R+ 2 < kn + kg + A-

Avoid scaling indeterminacy: norm the columns
of two component matrices to length 1



Degenerate CP solutions

o Two-factor degeneracy

1. a. = * a; b.~ x b Cs~ £ C
2. product of three correlations tends to —1

3. magnitudes of c; and c; become
arbitrarily large



Two-factor degeneracy

Y® = a. o0 b o cs YO = a, 0 bt o ¢
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Y® + YO remains “small” and contributes
to a better CP fit



Degenerate CP solutions

o Three-factor degeneracy

1. as,® ta;,= £ a, b:.x £ b;~ b,
2. cs=0iC;= 0,c, forconstants 0; and 0,

3. magnitudes of cs, c; and c, become
arbitrarily large

4, csx c;x ¢, remains “small”



Three-factor degeneracy
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Y® + YO 1 YW remains “small” and contributes
to a better CP fit



Example for 3x3x2 with R =3

048 046 -0.47] 10.72 -0.69 0.71
-0.66 -0.65 0.66 B=/061 -0.65 0.63
-057 -0.60  0.58] 1033 -031 0.32]

653 -—-625 12/8
2162 —-2239 4398

factor 1 =~ factor2 = - 2-factor 3



Idea of Kruskal, Harshman and Lundy (1989)

e “Degenerate CP solutions occur when the CP
objective function does not have a minimum but
an infimum”

« Ten Berge, Kiers & De Leeuw (1988) proved this
for a specific 2x2x2 array and R = 2

« Paatero (2000): degenerate sequences of 2x2x2
arrays of rank 2 approximating a rank-3 array



The CP problem

Minimize HK —XHZ

subjectto Y [ |[Dr = {Y withrank £ R}

Lim (2004): the set Dy is not closed for R = 2

= CP may not have a minimum if X lies outside Dy
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Consider all pxgx2 arrays

Random pxgx2 array X with p > g
For which {p,g,R } do degenerate solutions occur?

Typical rank (Ten Berge & Kiers, 1999) of X:

min(p, 2q) if p>g
{p, p+1} if p=g

If R = rank(X), then no degenerate solutions occur
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X rank(X) R Degeneracy?
p=ag p+1 R=p always
D=3 p+1 R<p sometimes
p=ag Js, R<p sometimes
p>qg |min(p 2q9) | (p,29) > R> g no
p>qg | min(p 29) R=g sometimes
p>qg |min(p 29) R< g sometimes

Stegeman (2006 b)
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Consider px px?2 arrays with R = p

% Y—1 eigenvalues | some complex
2°1 all real eigenvalues

rank(Y)=p rank(Y)=p+1

diagonalizable iy .
positive volume| positive volume

rank(Y)=p+1 | rank(Y)=p+1

not diag.
g zero volume zero volume

Ten Berge (1991), Ja’ Ja’ (1979)

Typical rank = {p, p+1} (Ten Berge & Kiers, 1999)
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2/ - dimensional space of pxpx2 arrays

-1 _ -1 .
Y,Y: " real eigenvalues / Y,Y1 " complex eigenvalues
diagonalizable diagonalizable

rank p

CP sequence .°
: * rank p+1
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Boundary arrays

Y,Y, " has real eigenvalues, but not all distinct

Y,Y," diagonalizable 9 rank p (type 1)

Y,Y, " not diagonalizable < rank > p+1 (type 2)

dimensionality (type 1) < dimensionality (type 2)

In practice only boundary arrays X of type 2 are
encountered
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Result for pxpx2 arrays with R = p

Let random X have rank p+1. There holds that:

(I) the CP objective function does not have a
minimum, but an infimum, and

(II) any sequence of CP solutions of which the
objective value approaches the infimum, will
become degenerate.

Stegeman (2006 a)
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Y rank p & eigendecomposition Y,Y," =K AK™

A rank-p decomposition of Y is: Y, =K |/ (K™Y))
Y, =K A (KY,)

1 L 1

= B=(K*VY.)' —
A K ( l) C Al I_ Ap

Kruskal holds: 2p+2<k, +k; +k. = p+p+2

=» uniqueness (if all eigenvalues are different)
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Sequence of solutions Y converges to X
Y,Y,* =K A K™ converges to X,X;
When the CP algorithm terminates:

« A =K has some columns close to linear
dependence

« B=(K™Y,)" has large magnitudes in these

columns
C R has th I I
. = as these columns nearly
_Al L /]p_ identical
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X rank(X) R Degeneracy?
p=ag p+1 R=p always ?
p=a p+1 R<p sometimes
p=ag s, R<p sometimes
p>qg|min(p 29) (p,/gz); R no next
p> g |min(p 29) R=g¢g sometimes
p>qg|min(p 29 R< g sometimes

Stegeman (2006 b)
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Consider pxgx?2 arrays with (p,2g) >R >qg

Let Wre={Y withrank [Y{]Y,] £ R}
Dr ={Y withrank(Y) < R} U W,
* Wr is a closed set
e rank(X) = min(p,2g) = X does not lie in Wx

e approximation of X from Wk always has
an optimal solution X
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Y liesin W, €=» there exists a non-singular S with

S [Y1]Y>] = where H; are R X g

rank(Y) = rank(H) and typical rank H = R
= dimensionality D; = dimensionality W

=» arrays in Wy of rank higher than R lie in a set
of lower dimensionality
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pxgx2 arrays with (p,2g) >R >qg

“—rank > R
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X rank(X) R Degeneracy?
p=ag p+1 R=p always ?
p=a p+1 R<p sometimes
p=ag s, R<p sometimes
p>qg|min(p 29) (p’/gz); R no OK
p> g |min(p 29) R=g¢g sometimes | next
p>qg|min(p 29 R< g sometimes

Stegeman (2006 b)
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Consider pxgx?2 arrays with p>R=¢g

Wr={Y withrank [Y{|Y2] < R}

Y liesin W €= S|[Yi]|Y>] = O O , With H; qXxdg

rank(Y) = rank(H) and typical rank H = {g, g+1}
= dimensionality D; = dimensionality W

=» arrays in Wk of rank higher than R = g lie in
a set of equal dimensionality
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pxgx2 arrays with p>R= g

. X

X1

-

rank > R
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X rank(X) R Degeneracy?
p=ag p+1 R=p always ?
p=q p+1 R<p sometimes | next
p=ag s, R<p sometimes | next
p>qg|min(p 29) (p’/gz); R no OK
p> g |min(p 29) R=g¢g sometimes | OK
p>qg|min(p 29 R< g sometimes | next

Stegeman (2006 b)

26



Consider pxgx?2 arrays with p>g> R

Yl
Wr={Y with rank [Y{|Y2] £ R and rank {Yj <R}

Dr ={Y withrank(Y) < R} U Wi
e Wk is a closed set
e X does not lie in W;

» approximation of X from Wy always has
an optimal solution X
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Y liesin W €= SY,T=|0 O|,withG, Rx R

rank(Y) = rank(G) and typical rank G = {R, R+1}
= dimensionality D; = dimensionality W;

=» arrays in Wy of rank higher than R lie in
a set of equal dimensionality
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Conclusions for pxgx2 arrays

the CP objective function may not have a minimum
if the boundary of the set D; consists (partly) of
arrays with rank larger than R

this is “caused by” the two-valued typical rank of
pPX pX2 arrays

this type of degeneracy does not occur in the
complex-valued CP model

a sequence of degenerate CP solutions is unique at
every point
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All known arrays with typical rank {k k+1}

asymmetric slices symmetric slices
PX pX2 {p,pt+1} PX pX2 {p,pt1}
3x3x5 {5,6} 3x3x%5 {5,6}
8x4x3 {8,9} 3x3x%x4 {4,5}

Ten Berge & Kiers (1999), Ten Berge (2000,2004)
Ten Berge, Sidiropoulos & Rocci (2004)

Take X random with rank(X)=k+1 and R =k

Symmetric slices: CP solution has A = B (Indscal)
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Array size | Typical rank | Degeneracy? | Unique?
DX DX 2 {p,p+1} always yes
px px2 (S) {p,p+1} always yes
3x3x%x5 {5,6} sometimes partially
3x3x%5 (s) {5,6} always no
3x3%4 (s) {4,5} always yes
8x4x3 {8,9} always (?) no

Stegeman (2006 ¢)
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