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• Heterogeneity in component analysis

• Parafac2 for multiple groups

• Fuzzy c-lines (or clusterwise regression)

• Parafac2 with unknown grouping

• Weighted ALS for Hidden Parafac2

• A simulation

• Discussion



Heterogeneity in component modeling 3

• Multiple-groups analysis, e.g., in Confirmatory Factor Analysis (CFA)

– Different sets of loading matrices are inferred according to a priori 
known grouping:

kAe.g., distinctive loading patterns of 
components underlying political 
perception variables on voting, by groups 
of different political affiliations

– Some loadings might be constrained to be 
equal across groups
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Parafac2 for multiple groups 4

• Parafac2 can be considered as a “constrained” multiple-groups 
component model with

– invariant angles between component “score” vectors,

– essentially invariant, but systematically reweighted loading 
matrix                                             -- weights for group k in 
mode C; 

e.g., loadings of “national security” component are weighted 
more by Republicans than by Democratics
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Three-way Parafac2 5
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• Direct fitting form: k
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Four-way Parafac2 6

• Direct fitting form:
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– one grouping:
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– two groupings:

• Indirect fitting form:
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Modeling for unknown heterogeneity 7

• As an analytic, descriptive approach, Bedzek’s fuzzy c-lines (or 
clusterwise regression) identifies unknown heterogeneity in 
regression

K sets of parameters and “fuzzy” membership are alternately 
updated, continuously minimizing a weighted least-squares 
function; thus guaranteeing a local minimum

• Finite mixture approach models a set of scores as a mixture of K
distributions with unknown mixing probabilities

These distributions are parametrically defined (e.g., Gaussian) and 
K heterogeneous sets of model parameters and the mixing 
probabilities are estimated according to distributional properties 
(e.g., maximizing a joint likelihood function) 



ALS for fuzzy c-lines 8

• Part-worth regression weights are estimated per fuzzy cluster
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• Membership is updated, given regression weights bk as{ }iku=U
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• A priori known “fuzzy weight” m determines fuzziness of 
clustering and the number of clusters K is also to be provided
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Three-way Hidden Parafac2 9

• Suppose one suspects heterogeneous subgroups embedded in a 
data mode (e.g., those who like G.W.B. vs. don’t), over which there 
exists Parafac-type systematic factor variation

• Three-way Hidden Parafac2 fits Parafac2 to an optimal fuzzy clusters 
of two-mode data
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Four-way Hidden Parafac2 11

• Like the three-way case, one more mode is created by an optimal 
clustering of the disappearing mode; generating multiple partitions of 
a three-way data array

• Factor weights in two modes can easily be estimated by fitting three-
mode Parafac to the original data, i.e., “stacked” data of the hidden 
four-mode data (if hard clustering assumed) as
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Other methods of clustering in reduced space 12

• Factorial K-means -- Vichi & Kiers

• Similar clustering in the reduced space by Tucker3 (A and G) – Rocci
& Vichi

• Candclus: Candecomp + binary constraints on component weights in 
any subset of modes – Carroll and colleagues

• Clusterwise GSCA (Generalized Structured Component Analysis) –
Hwang & Takane

• And more…



Weighted ALS for Hidden Parafac2 13

Step 1: Given a fixed U, all weight matrices are updated by the directing 
fitting ALS algorithm for Parafac2 (Kiers, et al)

Step 2: Given all weight matrices fixed, membership is updated as in the 
fuzzy-clines step

• These steps minimize a weighted LS function: 
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Simulated data 14

•

• # of factors = 3

• U: binary (i.e., hard clustering),  250 × 5

• factor weights in known other modes (B in three-way and B and C in 
four-way case): 

• For fallible case, random noise (30%) added to the error-free data 

• 5 replications per data condition, generating 2 × 2 × 5 sets of data
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Analytic conditions 15

• The current ALS algorithm needs to know at start at least some 
partial information; thus random numbers sampled from a uniform 
distribution (0,1) were added to the true membership with varying 
weights as

s t e ,     0,  1  2w w= + =U U U or

• All other parameters were initialized at 10 sets of random numbers

• All fitting used m = 1.3

• The algorithm stopped at 1000 iterations or parameters not changing 
more than 10–7 when scaled to unit norm



Three-way Hidden Parafac2 results (n = 5 per cell) 16

0.775   
0.189   
0.915   
0.909   
0.492

0.775   
0.132   
0.935   
0.951   
0.643

0.775   
0.190   
0.981   
0.983   
0.749

0.771   
0.139   
0.860   
0.895   
0.492

0.771   
0.497   
0.944   
0.899   
0.602

0.771   
0.118   
0.996   
0.991   
0.807

fit

B
C
U

error = 30%

0.999   
0.212   
0.940   
0.871   
0.629

0.997   
0.089   
0.985   
0.926   
0.784

1.000   
0.041   
0.998   
0.998
0.940

0.997   
0.423   
0.912   
0.852   
0.550

0.999   
0.365   
0.907   
0.904   
0.796

1.000   
0.146   
0.993   
0.992   
0.873

fit (R2)
(MAD)
B (r)**

C (r)
U (r)

error-free
w = 0          1              2 *w = 0          1              2 

0φ = 0.5φ =

φ

φ

* w = weight of random numbers added to true membership values at start
** r = congruence coefficient



Four-way Hidden Parafac2 results (n = 5 per cell) 17
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• The current WALS algorithm works when some fallible information 
available for the hidden membership

• A rational start of membership for cases when no information 
whatsoever available for the optimal grouping?

• What if a preprocessing necessary according to the hidden 
membership?

Optimal rescaling and centering might be incorporated into the 
model
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