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Overview

« Heterogeneity in component analysis

« Parafac2 for multiple groups

* Fuzzy c-lines (or clusterwise regression)
« Parafac2 with unknown grouping

« Weighted ALS for Hidden Parafac2

* A simulation

 Discussion



Heterogeneity in component modeling 3

« Multiple-groups analysis, e.g., in Confirmatory Factor Analysis (CFA)

— Different sets of loading matrices are inferred according to a priori
known grouping:

e.q., distinctive loading patterns of
components underlying political
perception variables on voting, by groups
of different political affiliations

>

— Some loadings might be constrained to be
equal across groups

X, =AB +E,

O O O[O0 O O X X X
O O O(X X X |O O O
X X X 1O O OO O O




Parafac2 for multiple groups 4

« Parafac2 can be considered as a “constrained” multiple-groups
component model with

— invariant angles between component “score” vectors, ® = A} A,

— essentially invariant, but systematically reweighted loading
matrix B(c,), (c,)=diag(c,) --weights for group & in
mode C;

e.g., loadings of “national security” component are weighted
more by Republicans than by Democratics



Three-way Parafac2 5

 Direct fitting form: k
A
X, =A (c)B+E,
AA =0, k=1,...K
« Indirect fitting form: X, X, =B(c,)®(c,)B'+E,
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Four-way Parafac2

« Direct fitting form:
— one grouping: X =A (d ){c,)B'+E,

AA =0, [=1,..,L

— two groupings: X, =A_{d){c,)B'+E,

ALA, =D, k=1...K, [=1,..,L

 Indirect fitting form:

X, X, = B, (e ){(d,)®{d,){c,)B"+E,



Modeling for unknown heterogeneity 7

* As an analytic, descriptive approach, Bedzek’s fuzzy c-lines (or
clusterwise regression) identifies unknown heterogeneity in
regression

K sets of parameters and “fuzzy” membership are alternately
updated, continuously minimizing a weighted least-squares
function; thus guaranteeing a local minimum

« Finite mixture approach models a set of scores as a mixture of K
distributions with unknown mixing probabilities

These distributions are parametrically defined (e.g., Gaussian) and
K heterogeneous sets of model parameters and the mixing
probabilities are estimated according to distributional properties
(e.g., maximizing a joint likelihood function)



ALS for fuzzy c-lines

Part-worth regression weights are estimated per fuzzy cluster
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Membership U ={u, } is updated, given regression weights b, as
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These steps minimize a weighted LS function: f = ZZulkelk

A priori known “fuzzy weight” m

i=1 k=1

(1 <m< oo) determines fuzziness of

clustering and the number of clusters K is also to be provided



Three-way Hidden Parafac2 9

« Suppose one suspects heterogeneous subgroups embedded in a
data mode (e.g., those who like G.W.B. vs. don’t), over which there
exists Parafac-type systematic factor variation

* Three-way Hidden Parafac2 fits Parafac2 to an optimal fuzzy clusters
of two-mode data

A Ny




Three-way Hidden Parafac2 10

X, =A (c)B+E,, A'A =®, k=1..,K

K 1
X, =(u,)"”" X subjectto Zuik =1, Zuik >0
k=1 i=1

» Clusteringis hard or crisp if u, =0/1 & fuzzyif 0<u, <1
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Four-way Hidden Parafac2 11

« Like the three-way case, one more mode is created by an optimal
clustering of the disappearing mode; generating multiple partitions of
a three-way data array

« Factor weights in two modes can easily be estimated by fitting three-
mode Parafac to the original data, i.e., “stacked” data of the hidden
four-mode data (if hard clustering assumed) as
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Other methods of clustering in reduced space 12

 Factorial K-means -- Vichi & Kiers

« Similar clustering in the reduced space by Tucker3 (A and G) — Rocci
& Vichi

« Candclus: Candecomp + binary constraints on component weights in
any subset of modes — Carroll and colleagues

* Clusterwise GSCA (Generalized Structured Component Analysis) —
Hwang & Takane

« And more...



Weighted ALS for Hidden Parafac2 13

Step 1: Given a fixed U, all weight matrices are updated by the directing
fitting ALS algorithm for Parafac2 (Kiers, et al)

Step 2: Given all weight matrices fixed, membership is updated as in the
fuzzy-clines step

* These steps minimize a weighted LS function:
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Simulated data 14

« A, ~N(0,®); ¢, =1, ¢,=00r 05, =50 for k=1,..5

1

e # of factors =3

 U: binary (i.e., hard clustering), 250 x 5

« factor weights in known other modes (B in three-way and B and C in
four-way case). _ N(O I)

« For fallible case, random noise (30%) added to the error-free data

« S replications per data condition, generating 2 x 2 x 5 sets of data



Analytic conditions 15

* The current ALS algorithm needs to know at start at least some
partial information; thus random numbers sampled from a uniform
distribution (0,1) were added to the true membership with varying
weights as

U=U+wU, w=0,1o0r2
« All other parameters were initialized at 10 sets of random numbers

 All fitting used m = 1.3

* The algorithm stopped at 1000 iterations or parameters not changing
more than 10~" when scaled to unit norm



Three-way Hidden Parafac2 results (n = 5 per cell)

¢=0 ¢=0.5
w=0 1 2 w=0 1 2
error-free
fit (R?) 1.000 0.999 0.997 1.000 0.997 0.999
¢ (MAD) | 0.146 0.365 0.423 0.041 0.089 0.212
B (r)"” 0.993 0.907 0.912 0.998 0.985 0.940
C (») 0.992 0.904 0.852 0.998 0.926 0.871
U (») 0.873 0.796 0.550 0.940 0.784 0.629
error = 30%

fit 0.771 0.771 0.771 0.775 0.775 0.775

¢ 0.118 0.497 0.139 0.190 0.132 0.189

B 0.996 0.944 0.860 0.981 0.935 0.915

C 0.991 0.899 0.895 0.983 0.951 0.909

U 0.807 0.602 0.492 0.749 0.643 0.492

“w = weight of random numbers added to true membership values at start
* r = congruence coefficient




Four-way Hidden Parafac2 results (n = 5 per cell) 17
=0 $=0.5
w=10 1 2 w=0 1 2
error-free
fit (R?) 1.000 1.000 0.996 1.000 1.000 0.997
¢ (MAD) | 0.000 0.000 0.007 0.000 0.000 0.122
D (») 1.000 1.000 0.960 1.000 1.000 0.972
U (») 1.000 1.000 0.725 0.992 1.000 0.716
B (r) 1.000 1.000 1.000 1.000 1.000 1.000
C (r) 1.000 1.000 1.000 1.000 1.000 1.000
error = 30%

fit 0.743 0.743 0.743 0.740 0.740 0.739

¢ 0.015 0.015 0.013 0.008 0.016 0.121

D 0.994 0.994 0.965 0.997 0.995 0.957

U 0.786 0.786 0.600 0.773 0.767 0.588

B 1.000 1.000 1.000 1.000 1.000 1.000

C 1.000 1.000 1.000 1.000 1.000 1.000




Discussion

e The current WALS algorithm works when some fallible information
available for the hidden membership

* A rational start of membership for cases when no information
whatsoever available for the optimal grouping?

« What if a preprocessing necessary according to the hidden
membership?

Optimal rescaling and centering might be incorporated into the
model

18
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