Hidden Parafac2 (in progress)

Sungjin Hong University of Illinois at Urbana-Champaign

Acknowledgment: Marg Lundy and Richard Harshman Heungsun Hwang

TRICAP 2006 Chania, Crete, Greece; June 8

Overview

- Heterogeneity in component analysis
- Parafac2 for multiple groups
- Fuzzy c-lines (or clusterwise regression)
- Parafac2 with unknown grouping
- Weighted ALS for Hidden Parafac2
- A simulation
- Discussion

- Multiple-groups analysis, e.g., in Confirmatory Factor Analysis (CFA)
 - Different sets of loading matrices are inferred according to a priori known grouping:

e.g., distinctive loading patterns of components underlying political perception variables on voting, by groups of different political affiliations

 Some loadings might be constrained to be equal across groups

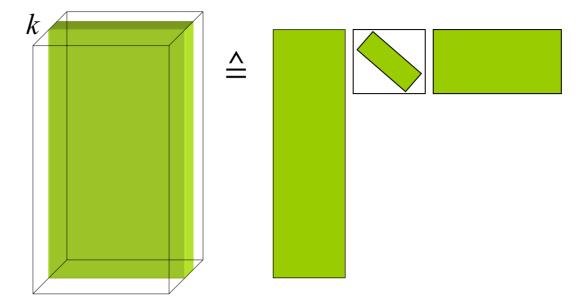
$$\mathbf{X}_k = \mathbf{A}_k \mathbf{B}'_k + \mathbf{E}_k$$

 \mathbf{A}_k $\mathbf{0}$ ()Х 0 $\mathbf{0}$ Х 0 0 Х 0 0 Х $\mathbf{0}$ 0 Х 0 0 Х 0 0 Х 0 0 Χ \mathbf{O} ()Х

- Parafac2 can be considered as a "constrained" multiple-groups component model with
 - invariant angles between component "score" vectors, $\Phi = A'_k A_k$
 - essentially invariant, but systematically reweighted loading matrix $\mathbf{B}\langle \mathbf{c}_k \rangle$, $\langle \mathbf{c}_k \rangle \equiv \operatorname{diag}(\mathbf{c}_k)$ -- weights for group k in mode C;

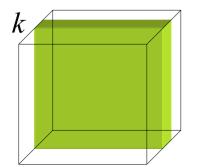
e.g., loadings of "national security" component are weighted more by Republicans than by Democratics • Direct fitting form:

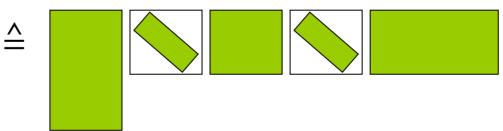
$$\mathbf{X}_{k} = \mathbf{A}_{k} \langle \mathbf{c}_{k} \rangle \mathbf{B}' + \mathbf{E}_{k}$$
$$\mathbf{A}_{k}' \mathbf{A}_{k} = \mathbf{\Phi}, \quad k = 1, \dots, K$$



• Indirect fitting form:

$$\mathbf{X}_{k}'\mathbf{X}_{k} = \mathbf{B}\langle \mathbf{c}_{k}\rangle \mathbf{\Phi}\langle \mathbf{c}_{k}\rangle \mathbf{B}' + \mathbf{E}_{k}$$





• Direct fitting form:

- one grouping:
$$\mathbf{X}_{kl} = \mathbf{A}_l \langle \mathbf{d}_l \rangle \langle \mathbf{c}_k \rangle \mathbf{B'} + \mathbf{E}_{kl}$$

 $\mathbf{A}'_l \mathbf{A}_l = \mathbf{\Phi}, \quad l = 1, \dots, L$

- two groupings:
$$\mathbf{X}_{kl} = \mathbf{A}_{kl} \langle \mathbf{d}_l \rangle \langle \mathbf{c}_k \rangle \mathbf{B'} + \mathbf{E}_{kl}$$

 $\mathbf{A}'_{kl} \mathbf{A}_{kl} = \mathbf{\Phi}, \ k = 1, \dots, K, \ l = 1, \dots, L$

• Indirect fitting form:

$$\mathbf{X}_{kl}'\mathbf{X}_{kl} = \mathbf{B}_{j}\langle \mathbf{c}_{k}\rangle\langle \mathbf{d}_{l}\rangle \Phi\langle \mathbf{d}_{l}\rangle\langle \mathbf{c}_{k}\rangle \mathbf{B}' + \mathbf{E}_{kl}$$

 As an analytic, descriptive approach, Bedzek's <u>fuzzy c-lines</u> (or clusterwise regression) identifies unknown heterogeneity in regression

K sets of parameters and "fuzzy" membership are alternately updated, continuously minimizing a weighted least-squares function; thus guaranteeing a local minimum

 <u>Finite mixture</u> approach models a set of scores as a mixture of K distributions with unknown mixing probabilities

These distributions are parametrically defined (e.g., Gaussian) and K heterogeneous sets of model parameters and the mixing probabilities are estimated according to distributional properties (e.g., maximizing a joint likelihood function)

• Part-worth regression weights are estimated per fuzzy cluster

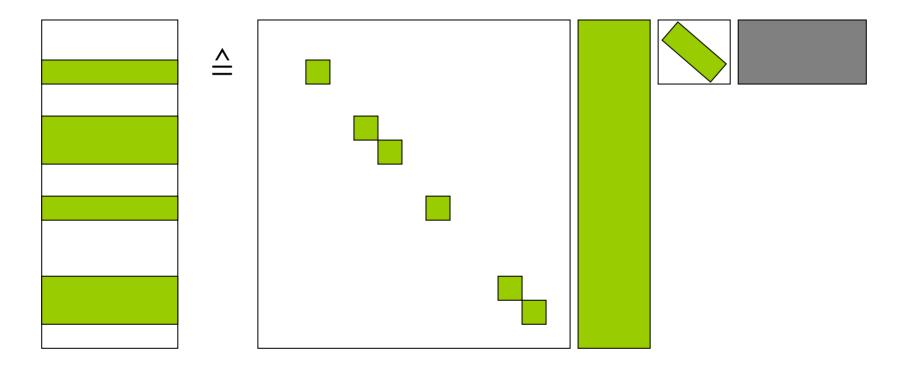
$$\mathbf{y}_{k} = \mathbf{X}_{k}\mathbf{b}_{k} + \mathbf{e}_{k}, \quad \left[\mathbf{y}_{k} \mid \mathbf{X}_{k}\right] = \langle \mathbf{u}_{k} \rangle^{0.5m} \left[\mathbf{y} \mid \mathbf{X}\right]$$

• Membership $\mathbf{U} = \{u_{ik}\}$ is updated, given regression weights \mathbf{b}_k as

$$\hat{u}_{ik} = \left[\sum_{k'=1}^{K} \left(\frac{e_{ik}}{e_{ik'}}\right)^{\frac{2}{m-1}}\right]^{-1}, \quad e_{ik} = \|y_i - \mathbf{x}'_{ik}\mathbf{b}_k\|$$

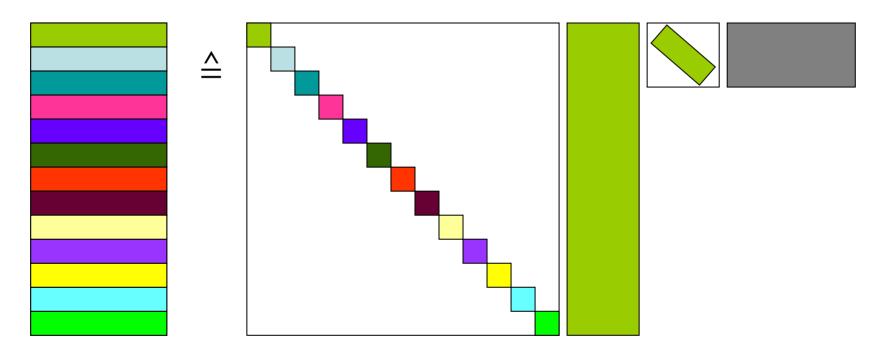
- These steps minimize a weighted LS function: $f = \sum_{i=1}^{I} \sum_{k=1}^{K} u_{ik}^{m} e_{ik}^{2}$
- A priori known "fuzzy weight" m (1 < m < ∞) determines <u>fuzziness</u> of clustering and the number of clusters K is also to be provided

- Suppose one suspects heterogeneous subgroups embedded in a data mode (e.g., those who like G.W.B. vs. don't), over which there exists Parafac-type systematic factor variation
- Three-way Hidden Parafac2 fits Parafac2 to an optimal fuzzy clusters of two-mode data



$$\mathbf{X}_{k} = \mathbf{A}_{k} \langle \mathbf{c}_{k} \rangle \mathbf{B}' + \mathbf{E}_{k}, \quad \mathbf{A}_{k}' \mathbf{A}_{k} = \mathbf{\Phi}, \quad k = 1, \dots, K$$
$$\mathbf{X}_{k} = \langle \mathbf{u}_{k} \rangle^{0.5m} \mathbf{X} \quad \text{subject to} \quad \sum_{k=1}^{K} u_{ik} = 1, \quad \sum_{i=1}^{I} u_{ik} > 0$$

• Clustering is hard or crisp if $u_{ik} = 0/1$ & fuzzy if $0 \le u_{ik} \le 1$



- Like the three-way case, one more mode is created by an optimal clustering of the disappearing mode; generating multiple partitions of a three-way data array
- Factor weights in two modes can easily be estimated by fitting threemode Parafac to the original data, i.e., "stacked" data of the hidden four-mode data (if hard clustering assumed) as

$$\mathbf{X}_{(JK \times I)} = (\mathbf{C} \odot \mathbf{B}) \tilde{\mathbf{A}}', \quad \tilde{\mathbf{A}}' = \begin{bmatrix} \tilde{\mathbf{A}}_1' \mid \cdots \mid \tilde{\mathbf{A}}_L' \end{bmatrix}$$
$$= \begin{bmatrix} \langle \mathbf{d}_1 \rangle \mathbf{A}_1' \mid \cdots \mid \langle \mathbf{d}_L \rangle \mathbf{A}_L' \end{bmatrix}$$
$$\mathbf{A}_l' \mathbf{A}_l = \mathbf{\Phi}, \quad l = 1, \dots, L$$

- Factorial K-means -- Vichi & Kiers
- Similar clustering in the reduced space by Tucker3 (A and <u>G</u>) Rocci & Vichi
- Candclus: Candecomp + binary constraints on component weights in any subset of modes – Carroll and colleagues
- Clusterwise GSCA (Generalized Structured Component Analysis) Hwang & Takane
- And more...

- Step 1: Given a fixed U, all weight matrices are updated by the directing fitting ALS algorithm for Parafac2 (Kiers, et al)
- Step 2: Given all weight matrices fixed, membership is updated as in the fuzzy-clines step

• These steps minimize a weighted LS function:

$$f = \sum_{i=1}^{I} \sum_{k=1}^{K} u_{ik}^{m} e_{ik}^{2}, \qquad e_{ik}^{2} = \sum_{j=1}^{J} \|x_{ijk} - \mathbf{a}_{ik}' \langle \mathbf{c}_{k} \rangle \mathbf{b}_{j}\|^{2}$$

- $\mathbf{A}_k \sim N(\mathbf{0}, \mathbf{\Phi}); \quad \phi_{ii} = 1, \quad \phi_{ii'} = 0 \text{ or } 0.5, \quad I = 50 \text{ for } k = 1, ..., 5$
- # of factors = 3
- U: binary (i.e., hard clustering), 250 × 5
- factor weights in known other modes (**B** in three-way and **B** and **C** in four-way case): $\sim N(0, I)$
- For fallible case, random noise (30%) added to the error-free data
- 5 replications per data condition, generating 2 × 2 × 5 sets of data

 The current ALS algorithm needs to know <u>at start</u> at least some partial information; thus random numbers sampled from a uniform distribution (0,1) were added to the true membership with varying weights as

$$\mathbf{U}_{\mathrm{s}} = \mathbf{U}_{\mathrm{t}} + w\mathbf{U}_{\mathrm{e}}, \quad w = 0, \ 1 \text{ or } 2$$

- All other parameters were initialized at 10 sets of random numbers
- All fitting used m = 1.3
- The algorithm stopped at 1000 iterations or parameters not changing more than 10⁻⁷ when scaled to unit norm

Three-way Hidden Parafac2 results (*n* = 5 per cell)

	$\phi = 0$			$\phi = 0.5$					
	$*_{\mathcal{W}} = 0$	1	2	w = 0	1	2			
	error-free								
fit (<i>R</i> ²)	1.000	0.999	0.997	1.000	0.997	0.999			
ϕ (MAD)	0.146	0.365	0.423	0.041	0.089	0.212			
B $(r)^{**}$	0.993	0.907	0.912	0.998	0.985	0.940			
C (<i>r</i>)	0.992	0.904	0.852	0.998	0.926	0.871			
U (<i>r</i>)	0.873	0.796	0.550	0.940	0.784	0.629			
	error = 30%								
fit	0.771	0.771	0.771	0.775	0.775	0.775			
ϕ	0.118	0.497	0.139	0.190	0.132	0.189			
В	0.996	0.944	0.860	0.981	0.935	0.915			
С	0.991	0.899	0.895	0.983	0.951	0.909			
U	0.807	0.602	0.492	0.749	0.643	0.492			

* w = weight of random numbers added to true membership values at start ** r = congruence coefficient

16

Four-way Hidden Parafac2 results (*n* = 5 per cell)

	$\phi = 0$			$\phi = 0.5$				
	w = 0	1	2	w = 0	1	2		
	error-free							
fit (<i>R</i> ²)	1.000	1.000	0.996	1.000	1.000	0.997		
ϕ (MAD)	0.000	0.000	0.007	0.000	0.000	0.122		
D (<i>r</i>)	1.000	1.000	0.960	1.000	1.000	0.972		
U (<i>r</i>)	1.000	1.000	0.725	0.992	1.000	0.716		
B (<i>r</i>)	1.000	1.000	1.000	1.000	1.000	1.000		
C (<i>r</i>)	1.000	1.000	1.000	1.000	1.000	1.000		
	error = 30%							
fit	0.743	0.743	0.743	0.740	0.740	0.739		
ϕ	0.015	0.015	0.013	0.008	0.016	0.121		
D	0.994	0.994	0.965	0.997	0.995	0.957		
U	0.786	0.786	0.600	0.773	0.767	0.588		
В	1.000	1.000	1.000	1.000	1.000	1.000		
С	1.000	1.000	1.000	1.000	1.000	1.000		

17

- The current WALS algorithm works when some fallible information available for the hidden membership
- A rational start of membership for cases when no information whatsoever available for the optimal grouping?
- What if a preprocessing necessary according to the hidden membership?

Optimal rescaling and centering might be incorporated into the model